## DETAILED PROJECT REPORT (D.P.R.)

(I.W.M.P. $3^{\text {rd }}-$ FARRUKHABAD ) INTEGRATED WATERSHED MANAGEMENT PROGRAMME, BLOCK- KAMALGANJ DISTRICT - FARRUKHABAD (UTTAR PRADESH)


Submitted to: -
Department of Land Development \& Water Resources. Lucknow (U.P.)

Prepared By:-
Bhoomi Sanrakshan Adhikari Department of Land Development \& Water Resources, Farrukhabad

Land Development \& Water Resources Government of U. P. Lucknow

## INDEX

| S.No | PARTICULARS | PAGE NO. |
| :---: | :--- | :---: |
|  | CHAPTER 1 PROJECT BACKGROUND |  |
| $\mathbf{1 . 1}$ | Project Background | 12 |
|  | Table no.1: Basic Project Information | 12 |
| $\mathbf{1 . 2}$ | Need of Watershed Development Programme | 12 |
|  | Table no. 2: Weightage of the project | 12 |
|  | Table no 2.1: Criteria and weightage for selection of watershed | 13 |
| $\mathbf{1 . 3}$ | Objectives and Scope of Project | 13 |
| $\mathbf{1 . 4}$ | Watershed Information | 14 |
| $\mathbf{1 . 5}$ | Status of previous watershed programmes \& other development project/scheme in the <br> watershed area | 14 |
|  | Table no. 4 Developmental Programmes running in the project area | 14 |
|  |  | 14 |
|  | CHAPTER 2 GENERAL DISCRIPTION OF THE WATERSHED | 16 |
| $\mathbf{2 . 1}$ | Location | 16 |
|  | Table 5. Area under major land uses, irrigated and rain fed area, | 17 |
| $\mathbf{2 . 2}$ | Physiography | 17 |
|  | Table no. 6: Elevation range, longitude latitude, relief height difference etc | 18 |
| $\mathbf{2 . 3 . 1}$ | Major stream | 18 |
|  | Table No.7: Stream characteristics of watershed | 18 |
| $\mathbf{2 . 4}$ | Climate | 18 |
|  | Table no. 8: Climatic Condition | 19 |
| $\mathbf{2 . 5}$ | Watershed Characteristics | 19 |
| $\mathbf{2 . 5 . 1}$ | Shape and Size | 19 |
|  | Table no. 9: Shape and Size of watershade | 19 |
|  | Table no. 10: Length of main stream, drainage density, average slope, watershed relief etc | $19-20$ |
| $\mathbf{2 . 6}$ | Geomorphology And Soils |  |
|  |  |  |


|  | CHAPTER 3 BASELINE SURVEY |  |
| :---: | :--- | :---: |
| 3.1.1 | Demographic pattern | 21 |
|  | Table no. 11: Demographic pattern detail | 21 |
| 3.1.2 | Literacy rate | 22 |
|  | Table no. 12: Literacy rate detail | 22 |
| 3.1.3 | Migration pattern | 23 |
|  | Table no. 13: Migration detail | 23 |
| 3.14 | Infrastructure social features | 24 |
|  | Table no.14: Details of infrastructure in the project area | 24 |
| 3.15 | Venn diagram | $25-33$ |
| 3.1.6 | Historical timeline | $34-35$ |
| 3.2 | Soil and Land use | 36 |
| 3.2.1 | Soil morphology | 36 |
| 3.2.2 | Morphology of a typical soil profile of micro watershed (dominant soil) | 36 |
|  | Table no. 15: Morphology of a typical soil profile of micro watershed (dominant soil) | 36 |
| 3.2.3 | Soil characteristics and fertility status | 37 |
|  | Table no. 15.1: Soil characteristics and Fertility Status up to 6" | 37 |
|  | Table no. 16: Area under different land capability class under micro watersheds | 38 |
|  | Table no. 16 a Detail of soil Erosion in the Project Area | 39 |
| 3.3 | Land Use Pattern | 40 |
|  | Table no. 17: Distribution of farm families according to their size of landings | 41 |
|  | Table no 18: Land use pattern | 42 |
|  | Table no. 19 Production and productivities of important commodities | 43 |
| 3.4 | Horticulture | 44 |
| 3.5 | Live Stock Population | 45 |
|  | Table no. 20: Live stock population | 45 |
| 3.6 | Fisheries | 45 |
| 3.7 | Forest and other Vegetation | 46 |
| 3.8 | Livelihood Pattern | 47 |
|  | Table no. 21: Livelihood pattern (Occupational Distribution) | 47 |
|  | Table no. 22: Per capita income | 47 |
| 3.9 | Hydrology and water resource | 48 |
|  | Table no 23: Hydrology status | 48 |
|  | Table no. 24: Information about water resources | 48 |
|  |  |  |


| 3.10 | PROBLEMS AND NEEDS OF THE AREA | 49 |
| :---: | :---: | :---: |
|  | Table no. 25: Problem identification and prioritization for Micro Watersheds | 49 |
|  | Table no. 26: SWOT analysis of the Micro Watersheds | 50 |
|  | CHAPTER 4 WATERSHED ACTIVITIES |  |
| 4.1 | Participatory Rural Appraisal (PRA) | 51 |
| 4.2 | Social Mobilization and Community Organization | 51 |
|  | Table no. 27: Physical outlays oh PIA,U.G., S.H.G., W.D.T. and W.C. | 51 |
|  | Table no. 28: Details of Watershed Committees (WC) | 52 |
|  | Table no.29: Details of Watershed Development Teams (WDTs) in the project area | 53 |
| 4.2.3 | Self Help Group | 54 |
|  | Table no. 30 SHG detail | 54-55 |
| 4.2.4 | User Group | 55 |
|  | Table no. 31: UGs detail | 56-57 |
| 4.3 | Project Implementing Agencies | 59 |
|  | Table no. 32: Project Implementing Agency (PIA) | 60 |
| 4.4 | Project Implementation Strategy | 61 |
| 4.4.1 | Scientific Planning | 61-62 |
|  | Table no. 33: Details of Scientific Planning and Inputs in IWMP II projects | 63-64 |
| 4.5 | Convergence of watershed programmes | 64 |
|  | Table no. 34 : Details of Convergence of other Schemes in the Project area with IWMP Project | 65-66 |
|  |  |  |
|  | CHAPTER 5 MANAGEMENT ACTION PLAN |  |
| 5.1.1 | Entry Point Activities | 67 |
|  | Table no. 36: Entry point activities (EPA) | 67-68 |
|  | Table no. 37 : Other activities of preparatory phase | 68 |
|  | Table no. 38 : List of approved Training Institutes for capacity Building in the project area | 69 |
| 5.1.2 | Capacity Building | 69 |
|  | Table no 39: Capacity Building activities in the project | 70 |
|  | Table no 40: Detail of activities undertaken | 70 |
|  | Table no 41 : Information, Education \& Communication (IEC) activities in the project area | 71 |
| 5.2.1 | WORK PHASE | 71-73 |
|  | Table no 42: Activities related to Surface Water resources in the project areas | 73 |
|  | Table no. 43: Technical detail of Farm Ponds and Injection Well | 74 |


|  | Table no 44: Activities related to recharging ground water resources in the project areas | 74 |
| :---: | :---: | :---: |
|  | Table 45: Activities executed by User Groups in the Project | 74 |
|  | Table no 46: Details of engineering structures in watershed works | 75 |
|  | Table no 48: Total Treatment of Micro Watershed of IWMP III | 76 |
|  | Table no 49: Technical detail of engineering works in project area | 76 |
| 5.2.2 | Proposed Land Use | 79 |
|  | Table No. 50: Present and Proposed Land Use Plan of the IWMP-III Watershed | 79 |
| 5.2.3 | Water Resource Development and Soil Conservation Measures | 80-83 |
|  | Table no. 51 : Details of activities connected with vegetative cover in watershed works | 84-85 |
|  | Table no. 52: Technical Details of Afforestation and Agro forestry Activities in 1ha | 85 |
|  | Table no. 53: Cost Estimation for afforestation and Agro forestry activity in 1ha | 86 |
|  | Table no. 54: Technical Details of Horticultural Activities in 1ha | 85 |
|  | Table no. 55 : Cost Estimation for Horticultural Activities in 1ha | 86-87 |
|  | Table no. 56 : Agriculture Production | 88-89 |
|  | Table no. 57: Horticultural Production | 89 |
|  | Table no. 58:Animal Husbandry | 90 |
|  | Table no. 59: Fish Production | 91 |
|  | Table no. 60 : Details of allied/ other activities (Total of the production system and micro enterprises intervention | 91-92 |
|  | Table no. 61: Item wise total for the project | 93 |
|  | Table no 62: Activities related production system and micro enterprizes intervention by Self Help Groups (SHGs) in the Project areas | 93 |
|  | Table no. 63 : Details of allied/ other activities (Total of livelihood intervention) | 94-96 |
|  | Table no. 64: Item wise total for the project | 96 |
|  | Table no. 65: Activities related to livelihoods by Self Help Groups (SHGs) in the Project areas | 96 |
|  | Table no 66 : (A)Details of livelihoods created for landless people*- including micro enterprises | 97 |
|  | Table no. 67: (B)Details of other livelihoods created for farmers | 97 |
|  | Table no. 68: Backward and Forward Linkage | 98 |
| 5.3 | Convergence Planning for various activities | 98 |
|  | Table no. 69: Details of Convergence of other Schemes in the Project area with IWMP Project | 99-100 |
|  |  |  |
|  | CHAPTER -6 CAPACITY BUILDING PLAN | 101 |
|  | Table no 70: Capacity Building activities in the project | 102 |
|  | Table no 70.1: Detail of activities undertaken | 102 |
|  | Table no 70.2 : Information, Education \& Communication (IEC) activities in the project area | 102 |


|  |  |  |
| :---: | :--- | :---: |
|  | CHAPTER-7 PHASING OF PROGRAMMES AND BUDGETING |  |
| $\mathbf{7 . 1}$ | Funding of the Project | 103 |
|  | Table no. 72: Funding for the IWMP Project | 103 |
| $\mathbf{7 . 2}$ | Year Wise Phasing of Work (Physical \& Financial) | 103 |
|  | Table no. 73: Component wise and year wise phasing of physical and financial outlay | 105 |
|  | Table no. 74:Abstaract of component wise work and financial outlay of the selected 5 watershed |  |
|  |  | 104 |
|  | CHAPTER-8 CONSOLIDATION/EXIT STRATEGY | 106 |
| $\mathbf{8 . 1}$ | Quality and Sustainability Issues | 107 |
| $\mathbf{8 . 2}$ | Activities in the CPRs in the project area | $107-108$ |
|  | Table no. 75: Details of activities in the CPRs in the Project areas | 108 |
| $\mathbf{8 . 3}$ | Sustainability and environment security | 108 |
| $\mathbf{8 . 4}$ | Economic Analysis | 109 |
|  | Table no. 76: Proposed economics of agriculture sector | 109 |
|  | Table no. 77: Economics of Horticulture sector | 110 |
|  | Table no. 78: Economics of aforestation sector | 110 |
|  | Table no 79: Status of food requirement and availability per annum in IWMP-IIII watershed |  |
|  |  | 111 |
|  | CHAPTER-9 EXPECTED OUTCOMES | 111 |
| $\mathbf{9 . 1}$ | Employment | 111 |
|  | Table no. 80: Employment in Project area | 111 |
| $\mathbf{9 . 2}$ | Migration | 112 |
|  | Table no. 81: Details of seasonal migration from Project area | 112 |
| $\mathbf{9 . 3}$ | Drinking water | 112 |
|  | Table no. 82: Status of Drinking water | 112 |
| $\mathbf{9 . 4}$ | Vegetative cover | 112 |
|  | Table no. 83: Forest/vegetative cover | 113 |
| $\mathbf{9 . 5}$ | Livestock | Table no. 84: Details of livestock in the project areas (for fluids please mention in litres, for solids <br> please mention in kgs. and income in Rs.) |
| $\mathbf{9 . 6}$ | Vegetation/ crop related outcomes | 113 |
|  | Table no. 85: Details of karif drop area and yield in the project areas | 113 |
|  | Table no. 86: Details of Rabi drop area and yield in the project areas | 114 |
|  |  |  |


|  |  | $115-145$ |
| :--- | :--- | :---: |
|  | CHAPTER-10- DETAILS ESTIMATE OF WATERSHED DEVELOPMENT WORK PHASES | $146-151$ |
|  | CHAPTER- 11- DRAWING AND DETAILS ESTIMATE OF THE LIVELIHOOD <br> PROGRAMME | $152-167$ |
|  | CHAPTER- 12 DRWAING AND DETAILS ESTIMATE OF PRODUCTION SYSTEM AND <br> MICRO-ENTERPRISES |  |
|  | CHAPTER-13 MAPPING |  |

## EXCUTIVE SUMMARY

The Watershed comprises of Thirty Six villages in Kamalganj Block of Farrukhabad District of Utter Pradesh. All these watersheds has been identified by the Land development and water resources by IWMP scheme proper prioritization of different parameter for watershed selection criteria Farrukhabad. The watershed is located in the north west of Farrukhabad District. Its lies between: $27^{0} 10^{\prime} 25.25^{\prime \prime} \mathrm{N}$ to $27^{\circ} 19^{\prime} 13.28^{\prime \prime} \mathrm{N}$ Latitude and $79^{\circ} 29^{\prime} 12.38^{\prime \prime} \mathrm{E}$ to $79^{\circ} 41^{\prime} 45.45^{\prime \prime}$ E longitudes (2B3D3c1e, 2B3D3c2a, 2B3D3c2b, 2B3D3b1, 2B3D3b1a, 2B3D3c1c, 2B3D3b1c, 2B3D3c1d). Its altitude 170 to 175 M above the mean sea Level (MSL) The total area of watershed is 7933.00 ha., All these watershed are surrounded by the 36 grampanchayat. A watershed is the entire land areas which drain into a stream from its mouth. The watershed of a steam has not only area, but also depth extending from the top of the vegetation to the confining geologic strata beneath. It is a hydrologic unit. There is an infinite relationship between land \& water. In simple words it can be refused to the divide separating one drainage basin from other. It is also used a synonym for catchments over or a drainage basin.

The intensification of land use in to traditional agricultural sifting is self deputing because it is exploitive the present agricultures practice greatly increase runoff is soil erosion; reduce ground water recharge, cause flood \& sedimentation of reservoirs etc. As a result, the cultivated land resource base is shirking and its productive co capacity is diminishing.

Run off, erosion \& drainage represent serious problems in may areas of semiarid tropics. These problems can be solved by evolving developmental programmers which take into consideration natural topography and drainage pattern of the land. The collection of excess water and its utilization to provide greater stability to rainfed agriculture appears to be a variable developmental alternative. The watershed is the natural frame work for resource development in relation to crop production.

The climate of the region is characterized as arid to semi arid with average annual rainfall ranges 1030 mm annually with an average of 85 rainy days. Out of which above $85 \%$ is received during the monsoon season from July to September. The area received very less rainfall in the winter season. How ever temperature ranges from as high as $43.2^{\circ} \mathrm{C}$ in the May- June to as low as $5.0^{\circ} \mathrm{C}$ during December January the pattern of rainfall is highly erratic \& maximum water goes as run off.

The most soils of targeted area are sodic in nature, where productivity is very low. PH of these soils ranges from 7.5 to 10 . These soils are deficient in organic matter, water holding capacity \& micronutrients. Improved greed's of animal \& high yielding varieties of different crops, which have sodieness tolerance capacity like Usar Dhan $1 \& 3$ Daincha, Wheat, Barley, Beer, Bal \& Anola, Guava have need to introduce, In spite of that $33 \%$ area of sandy clay loam in nature, which have good soil characteristics along with productivity.

Farming is the main occupation of the dwellers of the watershed. The major crops over Rice Wheat Bajra, Archer, Mustard, Sugarcane etc. raised most of the lands kept fallow during khariff because of irregular \& uncertain rainfall during the rainy season; Rice \& Wheat are the most pre dominant cropping system in the area. A tune off $46 \%$ area under agricultural crop is covered during khariff season in the watershed. Among them various crops like race. Shares maximum area ( $10 \%$ ) followed by Arhar (45\%) Jowar (3\%), Maize (3\%) \& sugarcane (2\%).

Natural vegetation of watershed is not very scientific way. The Forest vegetation is far-dominant with shisham (Dalbergia sissoo) Karanj (Dongamain global), Mango (Manjifera indica) Babul (Acacia lilotica) Golar, Neem (Azadirchta indica) etc. There is no proper pasture in the watershed. Grass patches are seen only on the bunds, road side \& other such palaces, the principal grasses are serpat, dub (Cynolon ducty bin) Kans.

The erosion is main problem of the watersheds is to be locked by harvesting additional water is existing water harvesting structure, which have lost most of their capacity due to siltation \& creating new water bodies. Water stored in the water harvesting structures shall be properly recycled to provide supplemental irrigation of critical growth stages of crops \& for the establishment of fruit orchards and forest trees.

In agricultural land will treated with bunding alongwith minor leveling. Waste land will be treated with the engineering measures like staggered trenchs and a forestation etc.

Budget for the various components is given as below -

| S.No. | Budget for the various components is given as below - | Percentage | Total (Lakhs) |
| :---: | :--- | :---: | :---: |
| 1 | Management Cost |  |  |
|  | a) Administration Cost | $10 \%$ | 64.16 |
|  | b) Monitoring Cost | $1 \%$ | 6.41 |
|  | c) Evaluation | $1 \%$ | 6.41 |
|  | Sub Total | $\mathbf{1 2 \%}$ | $\mathbf{7 7 . 0 0}$ |
| 2 | Preparatory Phase |  |  |
|  | a) Entry Point Activities | $4 \%$ | 25.66 |
|  | b) Capacity building | $5 \%$ | 32.08 |
|  | c) Preparation of DPR | $1 \%$ | 6.41 |
|  | Sub Total | $\mathbf{1 0 \%}$ | $\mathbf{6 4 . 1 6}$ |
| 3 | Watershed Works | $50 \%$ | 320.82 |
| 4 | Livelihood Activities | $10 \%$ | 64.16 |
| 5 | Production System and Micro-enterprises | $13 \%$ | 83.44 |
| 6 | Consolidation Phase | $5 \%$ | 32.08 |
|  | Sub Total | $\mathbf{7 8 \%}$ | 500.48 |
|  |  | $\mathbf{1 0 0 \%}$ |  |
|  | Grand Total |  | $\mathbf{6 4 1 . 6 4}$ |

## PROJECT AT GLANCE

| 1. | Name of Project | IWMP- Farrukhabad III ${ }^{\text {rd }}$ |
| :--- | :--- | :--- |
| 2. | Name of Block | Kamalganj |
| 3. | Name of District | Farrukhabad |
| 4. | Name of State | Uttar Pradesh |
| 5. | Name of Micro Watershed | Bagar |
| 6. | Name of Village under Micro Watershed | Kunwarpur, Sharfuddinpur, Gudnamay, Siraunj, Faridpur, Ahmadpur <br> Devariya,Bahunna, Jhasi, Hisampur, Ratheura Mohuddinpur, Pataunja, <br> Musakhiryapur, Roypur, Mubarakpur, Madal Shankerpur, Korikhera, <br> Habbapur, Bhartamau,Gauserpur, Ugerpur, Nagriya Ghewar, <br> Rajipur, Kala Jala, Katrauli Patti,Rampur Majhgawan, Makrand <br> Khera, Jahanganj, Aluapur, Mahrupurkhar,Rajepur Tappa Mandal, <br> Kaihta, Pagoopur, Sindhauli, Dan Mandi, Mohmamadpur Amliya, <br> Sanauddinpur. |
| 7. | Micro Watershed Code Selected | 2B3D3c1e, 2B3D3c2a, 2B3D3c2b, 2B3D3b1, 2B3D3b1a, 2B3D3c1c, <br> 2B3D3b1c, 2B3D3c1d |
| 8. | Total Area of the Project | 7933.00 ha. |
| 9. | Proposed Area for Treatment | 5347.00 ha |
| 10 | Cost per hectare | Rs. 12000.00 per ha. |
| 11. | Project Period | 2010-11 to 2014-15 |
| 12. | Total cost of Project | 641.64 lacs |
|  |  |  |

## 1. INTRODUCTION AND BACKGROUND

### 1.1 Project Background

The block Kamalganj of Farrukhabad district situated in Eastern Plane Zone of Uttar Pradesh. Block is lies in western part of the District and is about 25 km away from district head quarter on 20 km away from State Highway on Mau to Farrukhabad road. The block come under agroclimatic zone Eastern Plain The watershed has been identified by the state department under Integrated Watershed Management Project (IWMP) scheme by proper prioritization of different parameter of watershed selection criteria (Annexure VI). The watershed is located in west side of Mau districts. It lies between $27^{0} 10^{\prime} 25.25^{\prime \prime} \mathrm{N}$ to $27^{0} 19^{\prime} 13.28^{\prime \prime} \mathrm{N}$ Latitude and $79^{\circ} 29^{\prime} 12.38^{\prime \prime} \mathrm{E}$ to $79^{\circ} 41^{\prime} 45.45^{\prime \prime}$ E longitudes. Altitude range of this watershed is 170 to 175 m from above sea level (MSL). The total area of watershed is 7933.00 ha and treatable area is 5347.00 ha

Table no.1: Basic Project information

| Name of <br> Project | District | Block | No of Village | No of MWS | Geographical <br> Area | Proposed Area | Treatable Area | Cost <br> (Rs in Lacs) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IWMP III ${ }^{\text {rd }}$ | Farrukhabad | Kamalganj | 36 | 8 | 7933.00 | 7933.00 | 5347.00 | 641.64 |

### 1.2 Need and Scope for Watershed Development

Watershed Development Prrogramme is prioritized on the basis of thirteen parameters namely poverty index, percentage of $\mathrm{Sc} / \mathrm{ST}$, Actual wages, Percentage of small and marginal farmers, Ground water status, Moisture index , Area under rain fed agriculture, Drinking water situation in the area, Percentage of degraded land, Productivity potential of the land, Continuity of another watershed that has already developed / treated, Cluster approach for plain and hilly terrain, Based on these thirteen parameter a compost ranking was given table no 2

Table no.2: Weightage of the project

| Project Name | Project <br> Type | Weightage |  |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IWMP-III | Eastern plain | i | ii | iii | iv | v | vi | vii | viii | ix | x | xi | xii | xiii | 77.50 |
|  |  | 7.5 | 05 | 05 | 05 | 02 | 10 | 15 | 7.5 | 10 | 10 | 10 | 05 | NA |  |

Table no 2.1 Criteria and weightage for selection of watershed

| S.No. | Criteria | Maximum | Ranges and Score |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | Poverty index (\% of poor to population) | 10 | Above 80\% (10) | 80-50\% (7.5) | 50-20\% (5) | Below 20\% (2.5) |
| ii | \% of SC/ST Population | 10 | > 40 \% (10) | 20-40 \% (5) | < 20 \% (3) | - |
| iii | Actual wages | 5 | Actual wages significantly lower than minimum wages (5) | Actual wages significantly higher than minimum wages (0) | - | - |
| iv | \% of small and marginal farmers | 10 | > 80 \% (10) | 50-80 \% (5) | < 50 \% (3) | - |
| v | Ground water status | 5 | Over exploitation (5) | Critical (3) | Sub critical (2) | Safe (0) |
| vi | Moisture index | 15 | -66.7 \& below (15) | -33.3 to-66.6 (10) | 0 to -33.3 (0) | - |
| vii | Area under rainfed agriculture | 15 | > 90 \% (15) | 80-90 \% (10) | 70-80 \% (5) | < 70\% (Reject) |
| viii | Drinking water | 10 | No source (10) | Problematic village (7.5) | Partially recovered (5) | Fully covered(0) |
| ix | Degraded land | 15 | High-above 20\% (15) | Medium-10-20\% (10) | Low less than 10\% (5) | - |
| x | Productivity potential of the land | 15 | Land with low production \& where productivity can be significantly enhanced with reasonable efforts (15) | Land with moderate production \& where productivity can be enhanced with reasonable efforts (10) | Land with high production \& where productivity can be marginally enhanced with reasonable efforts (5) | - |
| xi | Contiguity to another watershed that has already been developed/treated | 10 | Contagious to previously treated watershed \& contiguity within the micro watershed in the project (10) | Contiguity within the micro watershed in the project but non contagious to previously treated watershed (5) | Neither contagious to previously treated watershed nor contiguity within the micro watershed in the project(0) | - |
| xii | Cluster approach in the watershed | 15 | Above 6 micro watershed in the cluster (15) | 4 to 6 micro watershed in the cluster (15 | 2 to 6 micro watershed in the cluster (15 | - |
| Xiii | Cluster approach in the hills | 15 | Above 5 micro watershed in the cluster (15) | 3 to 5 micro watershed in the cluster (15 | 2 to 3 micro watershed in the cluster (15 |  |

### 1.3 Objectives and Scope of Project

a. Conservation, development and sustainable management of natural resources including their use
b. Enhancement of agriculture production and productivity in a sustainable manner.
c. Restoration of ecological balance in the degraded and fragile rain-fed ecosystem.
d. Reduction in regional disparity between rain-fed and irrigated areas.
e. Creation of sustainable employment opportunities for the rural community for livelihood security.
1.4 Watershed Information

| S. No. | Name of the Project | Type of watershed | Micro watershed Name | Code | Area (ha) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | IWMP <br> FARRUKHABAD III ${ }^{\text {rd }}$ | Micro watershed | Sharfuddinpur | 2B3D3c1e | 437.00 |
| 2 |  | Micro watershed | Jhasi | 2B3D3c2a | 1560.00 |
| 3 |  | Micro watershed | Korikhera | 2B3D3c2b | 930.00 |
| 4 |  | Micro watershed | Rajipur | 2B3D3b1 | 530.00 |
| 5 |  | Micro watershed | Rampur Majhgawan | 2B3D3b1a | 450.00 |
| 6 |  | Micro watershed | Mahrupurkhar | 2B3D3c1c | 310.00 |
| 7 |  | Micro watershed | Kaitha | 2B3D3b1c | 530.00 |
| 8 |  | Micro watershed | Mohmamadpur Amiliya | 2B3D3c1d | 600.00 |
|  |  | Total |  |  | 5347.00 |

Source: secondary data
1.5 Status ofv previous watershed programmes \& other development project/scheme in the watershed area

The IWMP III ${ }^{\text {rd }}$ watershed area being very backword has been on top priority of a number of development projects. These programmes are mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS), Swarnjayanti Gram Swarojgar Yojna (SGSY), Indra Awas Yojna etc.

Table no. 4 Developmental Programmes running in the project area

| S. No. | Name of Programmes/Scheme | Sponsored Agencies | Objectives | Commencement <br> (year) | Village Covered |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 1 | MGNREGS | Rural Development Dept. | Employment | 2009 | 12 |
| 2 | IAY | Rural Development Dept. | Housing | 2005 | 13 |
| 3 | SGSY | Rural Development Dept. | Self employment | 1999 | 10 |

## Source: Primary data

## 2. GENERAL DISCRIPTION OF THE WATERSHED

### 2.1 Location

(IWMP-III ${ }^{\text {rd }}$ ) project is located in Farrukhabad Taluka, Farrukhabad District of Uttar Pradesh state. It lies between $27^{0}$ $10^{\prime} 25.25^{\prime \prime} \mathrm{N}$ to $27^{0} 19^{\prime} 13.28^{\prime \prime} \mathrm{N}$ Latitude and $79^{\circ} 29^{\prime} 12.38^{\prime \prime} \mathrm{E}$ to $79^{\circ} 41^{\prime} 45.45^{\prime \prime}$ E longitudes. Altitude range of this watershed is 170 to 175 m from above sea level (MSL). The nearest town is Kamalganj which is about 15 Km from IWMP-IIIRD and is well connected by pucca road.


### 2.2 Area: Land use Pattern

The IWMP III ${ }^{\text {rd }}$ watersheds has diversified land uses namely agriculture, waste land (open scrub), seasonal water bodies etc. The varied present land use and area under different categories in watershed is shown in Table 6 \& 7 . The mixed land use followed in the watershed is almost similar in other parts of the U.P. During PRA exercise, the villagers prepared land use. One such map of village of IWMP III ${ }^{\text {rd }}$ watershed is shown in table5.

Table 5. Area under major land uses, irrigated and rain fed area, etc
Area in hectare

| S.N. | Name of <br> Project | No of Micro <br> Watershed | Geographical area | Forest <br> Area | Agriculture <br> land | Rain fed <br> Area | Pasture <br> land | Wastelands |  | Treatable <br> Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Cultivated | Uncultivable |  |
| 1 | IWMP | 8 | 7933.00 | 00.00 | 5632.38 | 5450.00 | - | - | - | 5347.00 |
|  | III ${ }^{\text {rd }}$ |  |  |  |  |  |  |  |  |  |

Source: Primary data
Various agricultural land uses in the watershed are extended to diversified land capabilities starting fro marginal to good class II lands. The watershed distinctly has three types of lands i.e. leveled, sloping and degraded and undulating. The agriculture is practiced on all these soil types though the productivity considerably varies. The total area under agriculture in the watershed is about 7933.00 ha out of which 897.96 ha is irrigated while 7455.00 ha is under rain-fed agriculture. The water (both irrigated and drinking) is most scarce natural resource in the watershed. The problem of tube wells for irrigation of agricultural crops frequently leads to the drinking water problem to the farmers of watershed forcing them to carry drinking water from out side the watershed area. The agricultural field bunds are common in the watershed, however, they frequently breach on heavy rains adversely affecting the in situ percolation of rain water in the soils.

### 2.3 Physiography

Total area of the IWMP III ${ }^{\text {rd }}$ Farrukhabad is 7933.00 ha with treatable area 5347.00 ha. Elevation range and location of altogether nine micro watershed shed are given below above

Table no. 6: Elevation range, longitude latitude, relief height difference etc*

| Location of watershed |  |  |  |  |  | Elevation of watershed from MSL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| District | Mandal | Micro watershed | Habitation | Longitude | Latitudes | Highest | Lowest | Relief height difference |
| Farrukhabad | Farrukhabad | 2B3D3c1e | Kunwarpur,Sharfuddinpur,Gudnamay, Siraunj, aridpur,AhmadpurDevari | $\begin{aligned} & 254057.49 \\ & 254411.77 \end{aligned}$ | $\begin{aligned} & 795056.453 \\ & 795226.49 \end{aligned}$ | 115 | 98 | 17 |
| Farrukhabad | Farrukhabad | 2B3D3c2a | Jhasi, Hisampur, Ratheura Mohuddinpur, Pataunja,Musakhiryapur,Roypur, Mubarakpur, | $\begin{aligned} & 254130.33 \\ & 254347.68 \end{aligned}$ | $\begin{aligned} & 794629.26 \\ & 79491.76 \end{aligned}$ | 148 | 105 | 43 |
| Farrukhabad | Farrukhabad | 2B3D3c2b | Madal Shankerpur, Korikhera, Habbapur, Bhartamau,Gauspur | $\begin{aligned} & 254139.83 \\ & 254329.59 \end{aligned}$ | $\begin{aligned} & 794820.00 \\ & 795115.41 \end{aligned}$ | 104 | 92 | 12 |
| Farrukhabad | Farrukhabad | 2B3D3b1 | Ugerpur,Nagriya Ghewar, Rajipur, KalaJala | $\begin{aligned} & 254050.88 \\ & 254227.05 \end{aligned}$ | $\begin{aligned} & 794534.26 \\ & 794738.66 \end{aligned}$ | 160 | 142 | 18 |
| Farrukhabad | Farrukhabad | 2B3D3b1a | Katrauli Patti, Rampur Majhgawan, Makrand Khera | $\begin{aligned} & 253950.89 \\ & 254215.63 \end{aligned}$ | $\begin{aligned} & 79477.46 \\ & 794963 \end{aligned}$ | 122 | 107 | 15 |
| Farrukhabad | Farrukhabad | 2B3D3c1c | Jahanganj, Aluapur,Mahrupurkhar, Rajepur Tappa Mandal. | $\begin{aligned} & 253930.08 \\ & 254116.91 \end{aligned}$ | $\begin{aligned} & 794511.04 \\ & 794724.09 \end{aligned}$ | 163 | 127 | 36 |
| Farrukhabad | Farrukhabad | 2B3D3b1c | Kaihta, Pagoopur, Sindhauli | $\begin{aligned} & 25396.69 \\ & 254110.72 \end{aligned}$ | $\begin{aligned} & 794439.21 \\ & 794654.98 \end{aligned}$ | 159 | 127 | 32 |
| Farrukhabad | Farrukhabad | 2B3D3c1d | Sirauj, Dan Mandi, Mohmamadpur Amliya,Sanauddinpur. | $\begin{aligned} & 253729.42 \\ & 253919.04 \end{aligned}$ | $\begin{aligned} & 794422.015 \\ & 794651.74 \end{aligned}$ | 158 | 132 | 26 |

## Source: Remote sensing Lknow.\& GPS

### 2.3.1 Major stream

The watershed is in the mid of IWMP III ${ }^{\text {rd }}$ Farrukhabad in the form of Yamuna and Betwa river having precipitous slop and drained in gully of Gandak river. About $4 \%$ of watershed area has slop more than $1 \%$ upright ridges. The top of the watershed exhibit extremely precipitous and manifesting moderate to severe erosion class. The lower portion of the watershed has moderate slope (less than $1 \%$ ). At the outlet of water shed small gullied are notice, covered with sparse vegetation. In Total (6 order -4 numbers, 6 order- 5 numbers and $3^{\text {rd }}$ order- 1 numbers) numbers of streams of different order are found in the watershed, with total stream length of 26100 m . Stream characteristics of watershed are presented in the table.

Table No.7: Stream characteristics of watershed (IWMP 8 Farrukhabad)

| Stream order | Stream number | Main stream length (M) |
| :---: | :---: | :---: |
| $1^{\text {st }}$ order | 6 | 5600.00 |
| $2^{\text {nd }}$ order | 7 | 7600.00 |
| $3^{\text {rd }}$ order | 2 | 14000.00 |
| Total | 15 | 27200.00 |

### 2.4 Climate

The watershed falls under the semi-arid region of tropical climate. The average annual precipitation is 1020 mm spreading over 85 rainy days. Most of the rainfall (about $85 \%$ ) is received during July to September. The rainfall is of moderate to high intensity. The area receives on or scanty rainfall in the winter season. The temperature variation ranges from as high as $42^{\circ} \mathrm{C}$ in the month of May- June to as low as $5^{\circ} \mathrm{C}$ in December- January.

### 2.4.1 Climatic Condition

Table no. 8: Climatic Condition

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Name of Project | Name of the block/ | No. of Micro Watershed | No. of <br> revenue <br> villages | Information |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Average Rainfall and rainy days (in mm) |  |  |  |  |  | Temperature (c) |  |  | Relative humidity (\%) |  |  |
|  |  |  |  |  | 2007 |  | 2008 |  | 2009 |  | 2007 | 2008 | 2009 | 2007 | 2008 | 2009 |
|  |  |  |  |  | Avg. <br> in <br> Mm | No. Of Days | Avg. <br> in <br> Mm | No. Of Days | Avg. <br> in <br> Mm | No. <br> Of <br> Days | Min- <br> Max |
| 1 | IWMP III ${ }^{\text {rd }}$ <br> Farrukhabad | Kamalganj | 10 | 13 | 1050 | 90 | 750 | 72 | 1020 | 92 | 38.00 | 37.9 | 35 | 85 | 85 | 82 |

### 2.5 Watershed Characteristics

### 2.5.1 Shape and Size

The watershed shape (IWMP III ${ }^{\text {rd }}$ Farrukhabad) is squire type. The maximum length and width of IWMP III ${ }^{\text {rd }}$ Farrukhabad the watershed are 16000 m and 10000 m , respectively with the length: width ratio $1.6 / 1$

Table no. 9: Shape and Size of watershade

| S. N. | Micro watershed Name | Code | Area (ha) | Shape | Approximate size in meter |  | Ratio Length: width |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Length | Width |  |
| 1 | Sharfuddinpur | 2B3D3c1e | 437.00 | Squire | 3500 | 1300 | 2.76:1 |
| 2 | Jhasi | 2B3D3c2a | 1560.00 | Elongate | 5300 | 2000 | 2.65:1 |
| 3 | Korikhera | 2B3D3c2b | 930.00 | Pentagonal | 10000 | 1400 | 7.14:1 |
| 4 | Rajipur | 2B3D3b1 | 530.00 | Elongate | 4200 | 1750 | 5.06:1 |
| 5 | Rampur Majhgawan | 2B3D3b1a | 450.00 | Cubical | 2200 | 1700 | 1.29:1 |
| 6 | Mahrupurkhar | 2B3D3c1c | 310.00 | Rectangular | 2900 | 2550 | 1.14:1 |
| 7 | Kaitha | 2B3D3b1c | 530.00 | Hexagonal | 3000 | 2050 | 1.46:1 |
| 8 | Mohmamadpur Amiliya | 2B3D3c1d | 600.00 | Elongate | 7000 | 2400 | 2.92:1 |

2.5.2 Length of main stream, drainage density, average slope, watershed relief etc.

Table no. 10: Length of main stream, drainage density, average slope, watershed relief etc

| S.No. | Project Name | Main stream | Drainage Density | Average Slope | Watershed Relief |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | IWMP III $^{\text {rd }}$ FARRUKHABAD | I-5800 meter | $0.90-1.20$ | $0-4 \%$ | $4-71$ meter |
|  |  | II- 7300 meter | meter/second |  |  |
|  |  | III- 13000 meter |  |  |  |

### 2.6 Geomorphology and Soils

### 2.6.1 Geomorphology

The IWMP III ${ }^{\text {rd }}$ Farrukhabad watershed is located North-west side of the Farrukhabad district. The entire watershed is topographically divided into three major landforms. Accordingly, the soils of watershed can be grouped into three major categories. Such as

- Plain land
- Ravinous land


### 2.6.2 Sloppy Land-Sandy Loam

The topmost portion (western \& northwest part) of the watershed is Sloppy land with occasional depressions of flat land. These soils are derived from the Sandy loam and are located at some height of around 10 feet. They have developed from typical alluvial soil slightly alkaline in nature with occasional thin layers of silt in small patches. Near the high level, the soils are coarse and underlying with hard sandstones. The soils of the upper level and very nearby adjoining areas are loamy sand to sand in texture. Depth is the major limitations of these soil groups. As move away upper level, the soil depth gradually increases along with clay content thereby improving the fertility. The soils are alluvial in colour with ferruginous concretions with slightly alkaline in reaction.

### 2.6.3 Fine textured alluvial soils

These soils are the most extensive soil group found in the IWMP II ${ }^{\text {nd }}$ Farrukhabad watershed. The middle portion of watershed is relatively flat land with fine soil texture. These soils are grey in colour and are inherently high in fertility status. These grey soils are sticky with high pH and on drying develop numerous cracks and fissures. Soil texture is silty clay loam particularly in depressions and loam in the elevated portion. The soils of the lower horizon are invariably heavier than the surface, being a zone of compaction and invariably a zone of calcium carbonate accumulation in the form of Kankar nodules. A subsurface indurate pan of kankar of clay or mixtures of both locally called as Potni soils are prevalent, which impede the downward movement of water thereby creating problems of high runoff.

### 2.6.4 Coarse textured alluvial soils

These soils are lying mostly near the adjoining areas of Yamuna River near the outlet and around the lower portion of foot hill of watershed. These soils are coarser in texture and are relatively poor in fertility status. The soils are loamy sand in texture. These soils also occupy significant area of the watershed. The soils are derived from the alluvial deposit and also from residual soils of the hill region. Rill and gully formation in some parts particularly near the outlet of watershed can be seen.

### 2.6.5 Drainage

Due to prevalence of mild to steep slopes and presence of a number of drainage lines in the watershed, the drainage system is adequate. The watershed forms part of Yamuna basin.

## 3. BASELINE SURVEY

### 3.1. Socio Economic Condition

### 3.1.1 Demographic pattern

The total population of nine micro watershed are 63112 and 9113 house holds is with average family size is 6.73 person s.
Table no. 11: Demographic pattern detail

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Name of <br> Micro <br> Watershed | Name of Villages | Total No of House Hold | Population |  |  | Population of SC/ST |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Male | Female | Total | Male | Female | Total |
| 1 | 2B3D3c1e | Kunwarpur,Sharfuddinpur,Gudnamay, Siraunj, aridpur,AhmadpurDevari | 2150 | 1400 | 950 | 4500 | 30 | 20 | 50 |
| 2 | 2B3D3c2a | Jhasi, Hisampur, Ratheura Mohuddinpur, Pataunja,Musakhiryapur,Roypur, Mubarakpur, | 13289 | 5183 | 6106 | 24578 | 1366 | 1159 | 2525 |
| 3 | 2B3D3c2b | Madal Shankerpur, Korikhera, Habbapur, Bhartamau,Gauspur | 989 | 721 | 368 | 2078 | 8 | 13 | 21 |
| 4 | 2B3D3b1 | Ugerpur,Nagriya Ghewar, Rajipur, KalaJala | 2295 | 2824 | 1471 | 6590 | 249 | 197 | 446 |
| 5 | 2B3D3b1a | Katrauli Patti, Rampur Majhgawan, Makrand Khera | 3953 | 2169 | 1784 | 7906 | 473 | 339 | 812 |
| 6 | 2B3D3c1c | Jahanganj, Aluapur,Mahrupurkhar, Rajepur Tappa Mandal. | 7268 | 911 | 557 | 8736 | 149 | 118 | 267 |
| 7 | 2B3D3b1c | Kaihta, Pagoopur, Sindhauli | 4350 | 2610 | 1740 | 8700 | 626 | 418 | 1044 |
| 8 | 2B3D3c1d | Sirauj, Dan Mandi, Mohmamadpur Amliya,Sanauddinpur. | 1112 | 1266 | 886 | 3264 | 343 | 289 | 632 |
|  |  | Total | 35406 | 17084 | 13862 | 66352 | 3244 | 2553 | 5797 |

Source: District statistic magazine

### 3.1.2. Literacy rate

Table no. 12: Literacy rate detail

| S. No. | Name of Micro Watershed | Name of Villages | Total population | \% of Literacy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Male | Female | Total |
| 1 | 2B3D3c1e | Katri Nathuapur, Katri Bahoran ,Batpura, | 2150 | 60 | 40 | 50 |
| 2 | 2B3D3c2a | Jhinjuki, Varukhera, NiyamatpurThakuran, Banderkhera, Laua Nagla, Medashyampur, Jalalpur, Kundan Ganeshpur. | 13289 | 55 | 41 | 48 |
| 3 | 2B3D3c2b | Gopalpur, Bhulanpur Chirpura, Latifpur | 989 | 52 | 46 | 49 |
| 4 | 2B3D3b1 | Shekhpur Rustampur, Amanabad, Kutubpur Bagar | 2295 | 56 | 44 | 50 |
| 5 | 2B3D3b1a | Makrand Nagar Bashah, Chandanpur, Shringirampur, | 3953 | 53 | 33 | 43 |
| 6 | 2B3D3c1c | Mohanpur Deenarpur, Siyapur, Rajepur Sarai Meda | 7268 | 62 | 44 | 53 |
| 7 | 2B3D3b1c | Gauspur, Nagla Daood | 4350 | 66 | 48 | 57 |
| 8 | 2B3D3c1d | Karimganj, Nagria Devrajpur, Nasratpur, Ranu Khera ,Bichpuri, Gadanpur Amle, Bhadurpur, Jagannathpur | 1112 | 64 | 44 | 54 |
|  |  | Total | 35406 | 468 | 340 | 404 |

Source: District statistic magazine

### 3.1.3. Migration pattern

Table no. 13: Migration detail

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Name of Micro Watershed | No. of Villages | Total population | Migration |  |  | Migration by Month |  |  | Main reason for migration | Income <br> during <br> migration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total | Male | Female | <3Month | 3-6 Month | $\begin{array}{\|l\|} \hline>6 \\ \text { month } \end{array}$ |  |  |
| 1 | 2B3D3c1e |  | 2150 | 1800 | 1400 | 400 | 1000 | 256 | 15 | Employment | Rs 3500/ month |
| 2 | 2B3D3c2a |  | 13289 | 11290 | 8025 | 3100 | 6000 | 1725 | 65 | Employment | Rs 4500/ month |
| 3 | 2B3D3c2b |  | 989 | 500 | 450 | 240 | 350 | 75 | 11 | Employment | Rs 4500/ month |
| 4 | 2B3D3b1 |  | 2295 | 2850 | 2000 | 840 | 1420 | 560 | 22 | Employment | Rs4000/ month |
| 5 | 2B3D3b1a |  | 3953 | 3189 | 2559 | 567 | 1875 | 422 | 35 | Employment | Rs 4500/ month |
| 6 | 2B3D3c1c |  | 7268 | 1000 | 700 | 300 | 500 | 190 | 10 | Employment | Rs4000/ month |
| 7 | 2B3D3b1c |  | 4350 | 2550 | 1750 | 890 | 1000 | 300 | 30 | Employment | Rs 4500/ month |
| 8 | 2B3D3c1d |  | 1112 | 2068 | 1550 | 518 | 1241 | 620 | 207 | Employment | Rs 3500/ month |

Source : Secondary data
3.14 Infrastructure social features

Table no.14: Details of infrastructure in the project area

| S.No. | Parameters | Status |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (I) | No. of Villages connected to the main road by an all-weather road | 26 |  |  |  |
| (ii) | No. of villages provided with electricity | 15 |  |  |  |
| (iii) | No. of households without access to drinking water | 7475 |  |  |  |
| (iv) | No. of educational institutions: <br> Primary (p)/Secondary(S)/ Higher secondary(HS)/ vocational Institution (VI) | (P) 8 | (S) 5 | $\begin{gathered} \hline \text { (HS) } \\ 6 \\ \hline \end{gathered}$ | (VI) |
| (v) | No. of villages with access to primary Health Center | 4 |  |  |  |
| (vi) | No. of villages with access to Veterinary Dispensary | 10 |  |  |  |
| (vii) | No. of villages with access to Post office | 14 |  |  |  |
| (viii) | No. of villages with access to Banks | 4 |  |  |  |
| (ix) | No. of villages with access to Markets/mandis | 11 |  |  |  |
| (x) | No. of villages with access to Agro-industries | - |  |  |  |
| (xi) | Total quantity of surplus milk | 2642 liter |  |  |  |
| (xii) | No. of milk collection centers (e.g. Union(U)/Society(S)/ Private agency (PA)/ others (O) | $\begin{gathered} \hline \text { (U) } \\ \text { No } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { (S) } \\ & \text { No } \end{aligned}$ | $\begin{gathered} \hline \text { (PA) } \\ 11 \end{gathered}$ | (O) |
| (xiii) | No. of villages with access to anganwadi Center | 6 |  |  |  |
| (xiv) | Any other facilities with no. of villages (please specify) | - |  |  |  |

The IWMP $I I^{\text {nd }}$ watersheds have moderate communication facilities and all sixty one villages are approachable through motorable road. Literacy rate in the watershed is very low because all villages are having education upto junior high school. All the villages are electrified and have TV \& telephonic connection. Nearest small market is at Barhani10 km and nearest big market Farrukhabad is about 35 km from the watershed. Religious and ritual features are almost common as in other part of the U.P. Small land holding (average less than 2.3 ha ) with large family size (average 6.72 person) and more than $45 \%$ of the labour force of the total population living below poverty line indicate poor socio economic status of the watershed community. However, strong community spirit among the villager's show positive indication for the success of any programmed to be implemented in participatory mode. Traditionally the entire village community participates in the individual works. Various village features is shown in fig

## VILLAGE SOCIAL MAP



## DISTANCE OF RESOURCES FROM VILLAGE



All Distance in Km.






## DISTANCE OF RESOURCES FROM VILLAGE




### 3.1.6. Historical timeline

An historical timeline is the chronological record of important events in the history of the village which is useful in understanding its background in the context of nine watersheds of Farrukhabad district. Historical timeline depicting important events in respect of different villages of the IWMP III ${ }^{\text {rd }}$ watershed was prepared through PRA. Historical timeline for important villages are given in table

| Village-2B3D3c1e |  | Village- 2B3D3c2a |  |
| :---: | :---: | :---: | :---: |
| Year | Activities | Year | Activities |
| 1700 | Established | 1710 | Established |
| 1960 | Construction Bandhi (water harvesting structure) | 1960 | Construction Bandhi (water harvesting structure) |
| 1965 | Opening up Primary School | 1985 | Opening up Primary School |
| 1976 | Introduction of Tractor | 1980 | Introduction of Tractor |
| 1978 | Establishment of Gobar gas plant | 1978 | Establishment of Gobar gas plant |
| 1979 | Kacha road | 1982 | Kacha road |
| 1985 | Introduction of thresher | 1987 | Introduction of thresher |
| 1986 | First Tube well | 1988 | First Tube well |
| 1990 | First motorcycle | 1992 | First motorcycle |
| 1993 | TV and DVD player | 1996 | TV and DVD player |
| 2002 | Electricity in the village | 2002 | Electricity in the village |
| 2003 | Bituminous road | 2003 | Bituminous road |
| 2005 | Temple renovation | 2007 | Temple renovation |
| 2009-10 | Planning for watershed project | 2009-10 | Planning for watershed project |
|  | Village- 2B3D3c2b |  | Village- 2B3D3b1 |
| Year | Activities | Year | Activities |
| 1702 | Established | 1707 | Established |
| 1960 | Construction Bandhi (water harvesting structure) | 1965 | Construction Bandhi (water harvesting structure) |
| 1985 | Opening up Primary School | 1986 | Opening up Primary School |
| 1980 | Introduction of Tractor | 1985 | Introduction of Tractor |
| 1978 | Establishment of Gobar gas plant | 1980 | Establishment of Gobar gas plant |
| 1982 | Kacha road | 1982 | Kacha road |
| 1987 | Introduction of thresher | 1988 | Introduction of thresher |
| 1988 | First Tube well | 1987 | First Tube well |
| 1992 | First motorcycle | 1993 | First motorcycle |
| 1996 | TV and DVD player | 1998 | TV and DVD player |
| 2002 | Electricity in the village | 2002 | Electricity in the village |
| 2003 | Bituminous road | 2004 | Bituminous road |
| 2007 | Temple renovation | 2009-10 | Planning for watershed project |
| 2009-10 | Planning for watershed project | 1707 | Established |


| Village- 2B3D3b1a |  | Village-2B3D3c1c |  |
| :--- | :--- | :--- | :--- |
| Year | Activities | Year |  |
| 1810 | Established | 1712 | Established |
| 1962 | Construction Bandhi (water harvesting structure) | 1963 | Construction Bandhi (water harvesting structure) |
| 1984 | Opening up Primary School | 1985 | Opening up Primary School |
| 1985 | Introduction of Tractor | 1980 | Introduction of Tractor |
| 1980 | Establishment of Gobar gas plant | 1978 | Establishment of Gobar gas plant |
| 1982 | Kacha road | 1982 | Kacha road |
| 1988 | Introduction of thresher | 1987 | Introduction of thresher |
| 1987 | First Tube well | 1988 | First Tube well |
| 1993 | First motorcycle | 1992 | First motorcycle |
| 1998 | TV and DVD player | 1996 | TV and DVD player |
| 2002 | Electricity in the village | 2002 | Electricity in the village |
| 2004 | Bituminous road | 2003 | Bituminous road |
| $2009-10$ | Planning for watershed project | 2007 | Temple renovation |
| 1810 | Established | $2009-10$ | Planning for watershed project |


| Village- 2B3D3b1c |  | Village- 2B3D3c1d |  |
| :--- | :--- | :--- | :--- |
| Year | Avtivities | Year |  |
| 1879 | Established | 1878 | Established |
| 1965 | Construction Bandhi (water harvesting structure) | 1968 | Construction Bandhi (water harvesting structure) |
| 1980 | Opening up Primary School | 1982 | Opening up Primary School |
| 1984 | Introduction of Tractor | 1981 | Introduction of Tractor |
| 1986 | Establishment of Gobar gas plant | 1985 | Establishment of Gobar gas plant |
| 1982 | Kacha road | 1983 | Kacha road |
| 1987 | Introduction of thresher | 1985 | Introduction of thresher |
| 1988 | First Tube well | 1984 | First Tube well |
| 1993 | First motorcycle | 1992 | First motorcycle |
| 1998 | TV and DVD player | 1995 | TV and DVD player |
| 2002 | Electricity in the village | 2002 | Electricity in the village |
| 2004 | Bituminous road | 2004 | Bituminous road |
| $2009-10$ | Planning for watershed project | $2009-10$ | Planning for watershed project |
| Source $:$ Secondary data |  |  |  |

Source : Secondary data

### 3.2. SOIL AND LAND USE

### 3.2.1 Soil morphology

The nine watershed of IWMP III ${ }^{\text {rd }}$ is located south west corner of the Farrukhabad district. The entire watershed is topographically divided into three major landforms accordingly; the soils of watershed have been grouped in three major categories.

1 Sloppy land
2 Plain land
3 Ravinous land
Soil profile A representative soil profile (Dominant soil- table 15)


### 3.2.2 Morphology of a typical soil profile of micro watershed (dominant soil)

Table no. 15: Morphology of a typical soil profile of micro watershed (dominant soil)

| Horizon | Depth (cm) | Morphology |
| :--- | :--- | :--- |
| A | $0-150$ | Light grayish colour 28\% with free $\mathrm{NaCO}_{3}$, Sticky when moist, hard when dry, high elasticity, <br> fissures and cracks, occasional occurrence of free calcium carbonate granules ph 8.3-8.7 |
| B | $150-600$ | Whitish-yellow in colour, high effervescence with dilute NaOH. very fine mixed with free <br> CaCO3 and granules, very hard when dry, compact \& indurate hard pan, restricting development <br> of root and downward water transmission (locally called as Potni soil) |
| C | $>600$ | White and white sandstone, Regolith (Parent material) |

### 3.2.3. Soil characteristics and fertility status

Table no. 15.1: Soil characteristics and Fertility Status up to 6"

| Soil Properties | LCC I | LCC II | LCC III |
| :--- | :--- | :--- | :--- |
| Sand (\%) | 47.04 | 75.04 | 73.04 |
| Silt (\%) | 24.6 | 18.6 | 20.3 |
| Clay (\%) | 28.36 | 6.36 | 6.66 |
| Texture | Sandy clay loam | Loamy sand | Loamy sand |
| pH (1:2) | 8.41 | 8.67 | 6.85 |
| EC(dS m-1) | 0.47 | 0.12 | 0.16 |
| Organic carbon(\%) | 0.37 | 0.12 | 0.19 |
| Available N (kg ha-1) | 316 | 173 | 224 |
| Available P (kg ha-1) | 29 | 15 | $5-8$ |
| Available K (kg ha-1) | 189 | 325 | 230 |

* values correspond to soil fraction <2mm


### 3.2.4. Land Capability Classification (LCC)

Land capability classification was done to classify the soils in different groups based upon the limitations and to emphasize prevailing in the watershed under different kinds of soils. Initially reconnaissance survey was carried out for entire watershed in order to find out the different topo-sequences, landforms, soil depth and erosion hazards. This was followed by the detailed investigation of selected landforms to bring out the LCC classes of the Micro Watershed. Three classes of land capability namely II, III and IV were demarcated in the IWMP III ${ }^{\text {rd }}$ watersheds. The areas under different classes are sown in table and figure.

Table no. 16: Area under different land capability class under micro watersheds

| Land Capability Class | Area (ha) |
| :---: | :---: |
| I | 2138.80 |
| II | 1604.10 |
| III | 1069.40 |
| IV | 534.70 |
| Total | $\mathbf{5 3 4 7 . 0 0}$ |

### 3.2.4.1. Land capability class I (White)

This group is one of the most extensive LCC class of the watershed. This group of soil is occupying around 5333.10 ha of the watershed area. The soils are clay loam or silty clay loam in texture in alkaline in nature. The land under this class is nearly level to mild sloping ( $1 \%$ ). The soils are deep and erosion hazard is slight. Most of the productive agriculture land comes under class I. A considerable area of watershed is seasonally waterlogged comes under this LCC clas, primarily found near the earthen check. These areas are subject to eater logging in most part of the year. The lands are almost flat, silty clay or clay loam in texture, deep and very mild slopping. These lands have no major limitations other occasional water logging. During rabi season, the water is drained out and cultivation is carried out. These lands potentially very productive but due to water logging the rainy season, it could not be brought out under cultivation during the kharif season. The mapping unit for this class is given as under.
Land capability class Ie =scl-d5/b-e1

### 3.2.4.2 Land capability class II (whitish yellow)

A considerable area of watershed i.e. 1717.70 ha is under class II. This class is found in lower portion i.e. near the outlet of watershed. The soils are coarser in texture (loamy sand/sand), deep, susceptible to erosion hazard and undulating in topography. Rill and initiation of gully can be seen near the outlet of the watershed. mapping unit for this class is as follows.
Land capability class IIe=Is-d5-e3.IVes= Is-d3/D-e3 (Foot hill soil)

### 3.2.4.4. Land capability class III/IV (Greysh yellow)

These lands are occupying an area of 1333.27 ha of the watershed. This class of land is mostly found in hilly terrain of watershed. The soils are found under this class. Class III and IV are intermixed in near top of the watershed. Mostly class IV (444.43 ha) lands are located on topes, where soil depth is almost negligible. Soils with admixture of gravels/rock fragments are found in these classes of lands. The mapping unit for this class of land is as follows:
Land capability class IIIe= gls-d1/H/I-e4

### 3.2.4.5. Mapping units symbol

Soil depth (cm)d5->90 cm;d3=22.5-45.0;d17.5 cm
Texture cl-clay loam; Is- loamy sand; gls-gravelly loamy sand
Slope (\%) B-1-3;C-3-5;D-d-10\%;H-25-33;I-33-50
Erosion e1-25\% of A horizon lost; e2-50-75\% of a horizon lost e4-50-75\% B horizon lost.

### 3.2.4.6 Detail of soil Erosion in the Project Area

Table no. 16 a

| Cause | Type of erosion | Area affected (ha) | Run off (mm/year) | Average soil loss <br> (Tonnes /ha/year |
| :--- | :--- | :--- | :--- | :--- |
| Water erosion |  |  |  |  |
| A | Sheet | 3894 |  | 17 |
| B | Rill | 1117 | 393 |  |
| C | Gully | 539 |  |  |
|  |  | 5550 | 393 | 17 |
| Sub-Total | 5550 | NA | $0-01 \%$ |  |
| Wind erosion |  |  |  |  |
| Total |  |  |  |  |

### 3.3. Land Use Pattern

### 3.3.1 Land holding

Majority of the farmers are in the category of marginal (<1 ha) and small (1-2 ha) with average land holding of about 2.2 ha. These small land holding are further scattered at different places, which makes cultivation very difficult. Distribution of farm families according to the size of the land holdings are given in the table.

Table no. 17: Distribution of farm families according to their size of landings.

| S.N. | Name of Micro Watershed | Name of Villages | Land holding |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Marginal (<1 ha) | $\begin{gathered} \text { Small } \\ (1-2 \mathrm{ha}) \end{gathered}$ | $\begin{aligned} & \text { Large } \\ & \text { (>2 ha) } \end{aligned}$ | Total |
| 1 | 2B3D3c1e | Katri Nathuapur, Katri Bahoran ,Batpura, | 189 | 140 | 15 | 344 |
| 2 | 2B3D3c2a | Jhinjuki, Varukhera, NiyamatpurThakuran, Banderkhera, Laua Nagla, Medashyampur, Jalalpur, Kundan Ganeshpur. | 288 | 180 | 9 | 477 |
| 3 | 2B3D3c2b | Gopalpur, Bhulanpur Chirpura, Latifpur | 276 | 102 | 4 | 382 |
| 4 | 2B3D3b1 | Shekhpur Rustampur, Amanabad, Kutubpur Bagar | 400 | 156 | 12 | 568 |
| 5 | 2B3D3b1a | Makrand Nagar Bashah, Chandanpur, Shringirampur, | 200 | 122 | 3 | 325 |
| 6 | 2B3D3c1c | Mohanpur Deenarpur, Siyapur, Rajepur Sarai Meda | 297 | 112 | 14 | 423 |
| 7 | 2B3D3b1c | Gauspur, Nagla Daood | 312 | 139 | 9 | 460 |
| 8 | 2B3D3c1d | Karimganj, Nagria Devrajpur, Nasratpur, Ranu Khera ,Bichpuri, Gadanpur Amle, Bhadurpur, Jagannathpur | 256 | 126 | 8 | 390 |
|  |  | Total | 2218 | 1077 | 74 | 3369 |

Source : District statistic magazine

### 3.3.2. Land Use

The IWMP III ${ }^{\text {rd }}$ watersheds has diversified land uses namely agriculture, waste land (open scrub), seasonal water bodies etc. The varied present land use and area under different categories in watershed is shown in Table $6 \& 7$. The mixed land use followed in the watershed is almost similar in other parts of the U.P. During PRA exercise, the villagers prepared land use. One such map of village of IWMP III ${ }^{\text {rd }}$ watershed is shown in table

## Table no 18: Land use pattern

Area in hectare

| S.N. | Name of Project | No of Micro Watershed | Geographical area | Forest Area | Agriculture land | Rain fed Area | Pasture land | Wastelands |  | Treatable Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Cultivated | Uncultivable |  |
| 1 | $\begin{gathered} \text { IWMP } \\ \text { III }^{\text {rd }} \end{gathered}$ | 8 | 7933.00 | 0.00 | 5632.38 | - | - | - | - | 5347.00 |

Source : District statistic magazine

### 3.3.2.1 Agriculture

Various agricultural land uses in the watershed are extended to diversified land capabilities starting fro marginal to good class II lands. The watershed distinctly has three types of lands i.e. leveled, sloping and degraded and undulating. The agriculture is practiced on all these soil types though the productivity considerably varies. The total area under agriculture in the watershed is about 7933.00 ha out of which 1582.00 ha is irrigated while 6024.00 ha is under rain-fed agriculture. The water (both irrigated and drinking) is most scarce natural resource in the watershed. The problem of tube wells for irrigation of agricultural crops frequently leads to the drinking water problem to the farmers of watershed forcing them to carry drinking water from out side the watershed area. The agricultural field bunds are common in the watershed, however, they frequently breach on heavy rains adversely affecting the in situ percolation of rain water in the soils.

The agriculture soils in the watershed have diversified texture i.e. loam sand, silty clay loam and boulder mixed textures which are located in patches through out the watershed. The heavy soils are almost kept fallow during rainy season. The agricultural soils also have hard calcium pan at variable depths. The irrigation water is conveyed in earthen channels and surface irrigation methods following mainly border method or flood method of irrigation by the farmers in the watershed. These factors substantially reduce the Water use efficiency of limited available and valuable irrigation water in the watershed. The quality of irrigation water needs to be tested for assessing fitness of the quality for irrigation and other purposes.

Rehabilitation of waste lands with appropriate drought hardy species like Prosopis juliflora, introduction of suitable multipurpose trees, promoting agro-forestry on agricultural lands with appropriate fruit and forest species, suitable vegetative barriers on sloping lands can of high future value in meeting out not only fire wood and fodder demands in the watershed but also for soil and water conservation, rehabilitation of wasteland and substantial income generation for socio-economic up-liftmen of farmers in the watershed.

## One year rotation

## Single cropping

Fallow- mustard/wheat/gram/lentil/winter vegetables, Paddy/ bajra/jowar/sesame/black gram/ greem gram,- fallow.

## Double cropping

Paddy/ Bajra/ jowar/ sesame/black gram/gram gram- mustard/wheat/gram/lentil/winter vegetables

## Irrigated agriculture

One year rotation
Paddy/Bajra/jowar/sesame/black gram/ green gram- mustard/wheat/winter vegetables

### 3.3.2.2. $\quad$ Crop Productivity

Table no. 19 Production and productivities of important commodities in IWMP III Farrukhabad

| SI. | Name of Crop | 2005 |  |  | 2006 |  |  | 2007 |  |  | 2008 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { A } \\ \text { (Ha.) } \end{gathered}$ | $\begin{gathered} \text { P } \\ \text { (Tons) } \end{gathered}$ | Y <br> (Qt <br> $\mathrm{Ha})$ | $\begin{gathered} \text { A } \\ \text { (Ha.) } \end{gathered}$ | $\begin{gathered} \text { P } \\ \text { (Tons) } \end{gathered}$ | $\begin{gathered} Y \\ \text { (Qt } \\ \mathrm{Ha}) \end{gathered}$ | A <br> (Ha.) | $\begin{gathered} P \\ \text { (Tons) } \end{gathered}$ | Y <br> (Qt. <br> /Ha) | $\begin{gathered} \text { A } \\ \text { (Ha.) } \end{gathered}$ | $\begin{gathered} \text { P } \\ \text { (Tons) } \end{gathered}$ | Y <br> (Qt. <br> /Ha) |
| 1 | Paddy | 5146.0 | 159526.00 | 31.0 | 5146.0 | 17932.00 | 33.0 | 5146.0 | 19945.00 | 35.0 | 5146.0 | 20122.00 | 36.0 |
| 2. | Wheat | 5012.0 | 150360.00 | 30.0 | 152360.00 | 4758.0 | 32.0 | 5012.3 | 150360.00 | 30.0 | 5012.3 | 165396.00 | 33.0 |
| 3. | Mustard | 220.0 | 2090.00 | 9.5 | 220.0 | 1980.00 | 9.0 | 220.0 | 1760.00 | 8.0 | 220.0 | 1980.00 | 9.0 |
| 4. | Lentil | 76.0 | 18.0 | 9.5 | 76.0 | 14.4 | 8.0 | 76.0 | 15.7 | 7.5 | 76.0 | 14.4 | 8.5 |
| 5. | Pea | 201.0 | 1608.00 | 8.0 | 1714.00 | 17.0 | 8.5 | 202.0 | 1818.00 | 9.0 | 1818.00 | 19.8 | 9.0 |
| 6. | Potato | 98.0 | 14506.00 | 148.0 | 98.0 | 15190.00 | 155.0 | 98.0 | 15876.00 | 162.0 | 98.0 | 14506.00 | 148.0 |
| 7. | Sugarcane | 1.0 | 177.0 | 177.0 | 2.0 | 364.0 | 182.0 | 3.0 | 570.0 | 190.0 | 49.0 | 820.0 | 205.0 |
| 8. | Banana | 5146.0 | 159526.00 | 31.0 | 5146.0 | 17932.00 | 33.0 | 5146.0 | 19945.00 | 35.0 | 5146.0 | 20122.00 | 36.0 |

Source : District statistic magazine
The agricultural productivity is primarily driven by the amount and distribution of rain water specifically during two cropping seasons i.e. rabi and kharif. Productivity of kharif crops is also affected by the late onset or early withdrawal of monsoon as well as intermittent droughts of variable duration and intensity. The farmers also do not have suitable cropping systems to deal aberrant weather. Weeds impose considerable constraint in productivity of both kharif and rabi crops under irrigated ad well as rain-fed production system. Farmers undertake normally one manual weeding in mustard and other valuable crops however, practice is energy and time consuming. Use of weedicide is rare in the watershed.

The mixed cropping is in practice in limited area with kharif crops like bajra and jowar but it is not only irrational but also unscientific and beset with low productivity. Subsequent rabi crops in general and mustard crop in particular are raised on residual soil moisture under rain-fed production system during post mansoon season. Imbalanced use of fertilizers is common in not only rabi and kharif crops but also in rain-fed and irrigated production system. The recommended deep plowing for enhanced in situ residual soil moisture conservation and higher production is also not followed in the watershed. The shallow ploughing tractor drawn tillage implements are available with the farmers in the watershed but deep ploughing implements yet need to be introduced.

The soil fertility/health restoration practices like green manuring, crop rotations and intercropping specifically with legumes, use of FYM/compost, Vermicompost, bio ferilizers, soil and water conservation measures, use of brought up or in situ mulches are widely lacking in the watershed. The soil and water conservation measures are limited to mechanical/earthen measures created by the state Govt. agencies. Conservation agronomical measures like seeding and plowing across the slope, weed mulching, agro-forestry, vegetative barriers etc also completely lack in the watershed.

### 3.3.2.3. Indigenous technological knowledge (ITK)

The agriculture is an old traditional practice of farmers in the watershed who have improved themselves with passage of the time according to their domestic need and technological reforms in the nearby areas. The villagers have their traditional village ponds, practice of field bunding which typically constitute agriculture related ITKs in the watershed. The mustard being a cash/fire wood crop of the watershed is being cultivated in self designed manner by the farmers. However, limited fertilizer application specifically the DAP came in to practice since about 20 years.

### 3.4 Horticulture

The subtropical fruits and vegetables have very good potential in the watershed. The fruit trees has limited in number like mango, guava, papaya, lemon, lime, ber, aonal, bael as vegetables like cucurbits, okra, radish, tomato,cauliflower cabbage, garlic, onion, brinjal, chilly, but they are found surviving well in the watershed villages. Organized orchards, commercial vegetable cultivation, horti-agri and other systems of agro-forestry etc are lacking but have good potential in the water shed.

### 3.5 Live Stock Population

Total livestock population of the IWMP III ${ }^{\text {rd }}$ watersheds is 3418 cow is preferred as milch animal compared to bufallow, but milk yield is very low. Goats are also kept for milk as well as for meat purpose. The detail of live stock population is given in table below

Table no. 20: Live stock population

| S. <br> $\mathbf{N}$. | Name of Micro <br> Watershed | Name of Villages | Buffaloes | Cows | Bullocks | Goat | Sheep | Total |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2B3D3c1e | Katri Nathuapur, Katri Bahoran ,Batpura, | 715 | 500 | 80 | 1200 | 195 | $\mathbf{2 4 9 0}$ |
| 2 | 2B3D3c2a | Jhinjuki, Varukhera, NiyamatpurThakuran, Banderkhera, <br> Laua Nagla, Medashyampur, Jalalpur, Kundan Ganeshpur. | 1989 | 727 | 210 | 3023 | 316 | $\mathbf{6 0 8 7}$ |
| 3 | 2B3D3c2b | Gopalpur, Bhulanpur Chirpura, Latifpur | 490 | 526 | 82 | 509 | 63 | $\mathbf{1 0 9 7}$ |
| 4 | 2B3D3b1 | Shekhpur Rustampur, Amanabad, Kutubpur Bagar | 502 | 304 | 63 | 1506 | 55 | $\mathbf{2 4 3 0}$ |
| 5 | 2B3D3b1a | Makrand Nagar Bashah, Chandanpur, Shringirampur, | 780 | 203 | 182 | 1018 | 213 | $\mathbf{2 1 0 8}$ |
| 6 | 2B3D3c1c | Mohanpur Deenarpur, Siyapur, Rajepur Sarai Meda | 312 | 927 | 163 | 118 | 98 | $\mathbf{1 9 1 8}$ |
| 7 | 2B3D3b1c | Gauspur, Nagla Daood | 500 | 380 | 40 | 400 | 210 | $\mathbf{1 5 3 0}$ |
| 8 | 2B3D3c1d | Karimganj, Nagria Devrajpur, Nasratpur, Ranu Khera <br> ,Bichpuri, Gadanpur Amle, Bhadurpur, Jagannathpur | 402 | $\mathbf{2 0 8}$ | 210 | 1703 | $\mathbf{2 4 0}$ | $\mathbf{2 7 6 3}$ |
|  | Total | $\mathbf{5 6 9 0}$ | $\mathbf{3 7 7 5}$ | $\mathbf{1 0 3 0}$ | $\mathbf{9 4 7 7}$ | $\mathbf{1 3 9 0}$ | $\mathbf{2 0 4 2 3}$ |  |

Source : District statistic magazine and secondary data

### 3.6 Fisheries

Commercial fish farming was not done by the farmers of in IWMP III ${ }^{\text {rd }}$, but there is a big scope for fish farming in these area. Aware farmers gated 25.00 q /ha production, it was very low.

### 3.7. Forest and other Vegetation

### 3.7.1. Forests

The watershed has no forest area only some wild trees are found in scattered manner.

### 3.7.2. Horticulture/ Agro-forestry

No horticulture and Agro forestry practices were observed in the watershed.

### 3.7.3. Agro-forestry

The agro-forestry practices are highly lacking in the watershed though it has good potential under existing dispositions and may play a vital role particularly with respect to minimization of cropping risk, build up soil fertility and productivity, soil conservation, partly meeting out the fire wood demand of rural community and moreover, optimizing the economical return from system as a whole under typical semi arid climate in the watershed. The other agro-forestry systems like agri-silvi, silvi-pastoral, bund and boundary plantations also have good potential to cater the fire wood and fodder demands of the rural community in the watershed. The existing area under agro-forestry is almost negligible. Prosopis juliflora may be planted as block or sole plantation specifically on marginal and degraded lands in the watershed. The agro-forestry interventions comprising of ber, bail, aonla, guava, popular etc may be applied to benefit of the farmers under rain-fed to irrigated production systems on leveled to sloping and marginal agricultural using proper planting techniques and termite control measures. The multipurpose trees may also help in supplementing fire wood and fodder demands of the rural community in the watershed and may be planted as hedge rows on rain-fed, marginal and degraded lands.

## Conclusions

The land capability classification of IWMP III watershed provides reasonable good information with regard to capability of soil, that could be used for agriculture, agri-horticulture, silviculture and pasture development. The majority of land form is coming under class II, which give an insight of good agriculture production potential of this watershed. The productivity of these lands could be further enhanced by adoption of simple soil \& water conservation measures like mild leveling, bunding, diversion drain and in-situ moisture conservation practices. The reasonable area is under class III indicating greater potential of this watershed for forestry and pasture development. The major physical limitations in case of agriculture soils are the sub soil hardness, low water infiltrability and slope. In case of area under topes of watershed, the most pronounced limitation of soil depth was noticed followed by severe erosion hazard and coarse soil texture. A small portion of watershed is under seasonally waterlogged. The soils under waterlogged area could be used for some other beneficial farming activities during the kharif season also.

### 3.7 Livelihood Pattern

The people of watershed area earn their livelihood from agriculture and animal husbandry. During lean period they migrate for daily wage labourrers in block and district head quarter and as agriculture labour in other pars of the state. Another occupation of the people is parental small scale occupation.

Table no. 21: Livelihood pattern (Occupational Distribution)

| S. N. | Name of Micro Watershed | Total <br> Workforce | Agriculture | A. Husbandry | Agriculture $+\mathbf{A} .$ <br> Husbadary | Casual <br> Labour | Service | Handcraft | Daily wage labour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2B3D3c1e | 3584 | 2115 | 615 | 615 | 1010 | 5 | 3 | 840 |
| 2 | 2B3D3c2a | 3750 | 2410 | 1110 | 2110 | 3045 | 12 | 7 | 742 |
| 3 | 2B3D3c2b | 2138 | 2135 | 912 | 912 | 1245 | 8 | 4 | 231 |
| 4 | 2B3D3b1 | 4468 | 3450 | 670 | 670 | 982 | 2 | 6 | 123 |
| 5 | 2B3D3b1a | 1049 | 970 | 120 | 120 | 472 | 14 | 5 | 258 |
| 6 | 2B3D3c1c | 4468 | 2112 | 210 | 210 | 956 | 1 | 6 | 847 |
| 7 | 2B3D3b1c | 5952 | 3876 | 815 | 815 | 889 | 4 | 2 | 1212 |
| 8 | 2B3D3c1d | 2068 | 989 | 455 | 455 | 850 | 8 | 6 | 240 |

### 3.7.1. Per capita income

Table no. 22: Per capita income in IWMP 8 Farrukhabad

| S. no. | Name of Project | Agriculture (Rs) | A. Husbandry (Rs) | Casual labour (Rs) | Others (Rs) | Total (Rs) |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | IWMP III $^{\text {rd }}$ Farrukhabad | 7750.00 | 4825.50 | 4900.00 | 2120.00 | 19100.50 |

Source : District statistic magazine and secondary data

### 3.8.1. Table no 23: Hydrology status

| S.No. | Name of Project | Item | Unit of measurement | Status |
| :---: | :---: | :---: | :---: | :---: |
| 1 | IWMP III ${ }^{\text {rd }}$ <br> Farrukhabad | Status of water table | Meters | 36.17 M |
| 2 |  | Ground water structures repaired/ rejuvenated | No. | - |
| 3 |  | Quality of drinking water | Quality | Poor |
| 4 |  | Availability of drinking water | Days | 300 |
| 5 |  | Irrigation potential | \% | 4 |

### 3.8.2. Water Resource

Table no. 24: Information about water resources

| S. N. | Name of Micro Watershed | Canal |  | Wells/Borewells |  | Tubewells |  | Ponds |  | Govt. handpump |  | Pvt. handpumps |  | Others |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D | N | D | N | D | N | D | N | D | N | D | N | D | N |
| 1 | 2B3D3c1e | - | - | 325 | 4 | 250 | 3 | 310 | 5 | 235 | 12 | 284 | 26 | - | - |
| 2 | 2B3D3c2a | - | - | 325 | 7 | 250 | 5 | 310 | 7 | 235 | 18 | 284 | 42 | - | - |
| 3 | 2B3D3c2b | - | - | 325 | 2 | 250 | 2 | 310 | 9 | 235 | 14 | 284 | 10 | - | - |
| 4 | 2B3D3b1 | - | - | 325 | 9 | 250 | 3 | 310 | 6 | 235 | 18 | 284 | 12 | - | - |
| 5 | 2B3D3b1a | - | - | 325 | 4 | 250 | 3 | 310 | 5 | 235 | 12 | 260 | 26 | - | - |
| 6 | 2B3D3c1c | - | - | 325 | 7 | 250 | 5 | 310 | 7 | 235 | 18 | 284 | 32 | - | - |
| 7 | 2B3D3b1c | - | - | 325 | 4 | 250 | 3 | 310 | 5 | 235 | 12 | 260 | 26 | - | - |
| 8 | 2B3D3c1d | - | - | 325 | 7 | 250 | 5 | 310 | 7 | 235 | 18 | 284 | 32 | - | - |

D= Availability of water in days
N= Number
Source : District statistic magazine and secondary data

## 3.9 <br> PROBLEMS AND NEEDS OF THE AREA

### 3.9.1 Problem Identification and prioritization

Food sufficiency, economic growth and environmental security ware identified as the major issues to be addressed in the watershed area. The area has undulating topography, steep unstable slopes, and excessive channel gradient and hence highly prone to soil erosion. Effective soil depth is limited and spatially highly variable hampering good crop growth (Table 11).

Problems identified and prioritized during the transact walk and PRA exercises in all the villages of this IWMP III ${ }^{\text {rd }}$ watershed were pooled and a list of nine problems representing the whole watershed was prepared. Problems were ranked as per their total weight age in the three villages. Lack of irrigation water was the greatest problem experienced by the people followed by low production of filed crops, lack of fodder availability and low animal productivity (Annexure- I).

Strength, weakness, opportunity and threat (SWOT) analysis is a useful decision support tool, A SWOT analysis of the Micro watersheds is presented in Table .

Table no. 25: Problem identification and prioritization for Micro Watersheds

| S. No. | Problem | Rank |
| :---: | :--- | :---: |
| 1 | Low production of field crops | 2 |
| 2 | Lack of drinking water | 3 |
| 3 | Lack of irrigation water | 1 |
| 4 | Low production of fish | 5 |
| 5 | Non-availability of fuel wood | 7 |
| 6 | Lack of inputs like quality seeds, fertilizer, pesticides ets. | 9 |
| 7 | Lack of market facility | 8 |
| 8 | Lack of medical, educational and transportation facilities | 4 |
| 9 | Medical and Health care facilities for milching animals and low productivity. | 6 |

Table no. 26: SWOT analysis of the Micro Watersheds

| Strengths (S) |  | Weakness (W) |  |
| :--- | :--- | :--- | :--- |
| 1 | Cooperative work culture in traditional activities. | 1 | Poor water management |
| 2 | Close ethic ties | 2 | Resource poor farmers |
| 3 | Road at ehe top as well as outlet of the watershed | 3 | Out migration of youth |
| 4 | Hard working | 4 | Low and erratic rainfall |
| 5 | Resource pool of crop genetics siversity | 5 | Fragile geology |
| 6 | Awareness of farmers about watershed management <br> programme | 6 | Fragmented land holding |
| 7 | Well established CPR maintaining and sharing system | 7 | Heavy infestation of wild animals |
| 8 | Stall feeding of animals | 8 | Problem of fuel and fodder |
| 9 | Well maintained seasonal water bodies | 9 | Shallow soil depth and with high percentage of gravel |
| 10 | Social outlook of the community towards land less |  |  |
|  | Opportunities (0) |  |  |
| 1 | Wide range of annual and perennial crops | 1 | Prone to adverse climate like drought |
| 2 | Scope of regular employment opportunities to check out | 2 | High market risk |
| 3 | Strengthening of existing irrigation system |  |  |
| 4 | Conducive climate for rainfed crop diversification | 4 | Social conflicts owing to PRI and WSM polices and local politics |
| 5 | Good scope for Agro forestry and dry land horticulture | 5 | Lack of expertise of implementing agency in different aspects of <br> WSM |
| 6 | Potential for collective action and management of CPR |  |  |

## 4. INSTITUTION BUILDING AND PROJECT MANAGEMENT

### 4.1 Participatory Rural Appraisal (PRA)

The past experience of watershed has given tremendous input to focus on creating accountability of the stakeholders towards the programme. This has created an emphasis to include the all stakeholders' communities and their local indigenous technological knowledge while planning for any activity. Participatory approach provides a new path for planning, implementing, monitoring and post withdrawal activities with a complete accountability of the stakeholders. Various PRA techniques like resource mapping, social mapping, matrix ranking and season calendar were used to understand the physical and social orientation of the village in general and watershed specific. These tools put the villagers in ease than the complicated questionnaires. Various tool like matrix ranking, Venn diagramme were used to identify various local vegetation (apt for afforestation), fodder crops, various institution and their significance in the life of the farmers.

### 4.2 Social Mobilization and Community Organization

Table no. 27: Physical outlays oh PIA,U.G., S.H.G., W.D.T. and W.C.

| S. No. | Name of watershed | Code No. | U.G. (No.) | SHG (No.) | WDT (No.) | PIA | WC (No.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sharfuddinpur | 2B3D3c1e | 4 | 1 | 1 | 1 | 1 |
| 2 | Jhasi | 2B3D3c2a | 3 | 3 |  |  | 1 |
| 3 | Korikhera | 2B3D3c2b | 3 | 7 |  |  | 1 |
| 4 | Rajipur | 2B3D3b1 | 3 | 3 |  |  | 1 |
| 5 | Rampur Majhgawan | 2B3D3b1a | 3 | 1 |  |  | 1 |
| 6 | Mahrupurkhar | 2B3D3c1c | 3 | 3 |  |  | 1 |
| 7 | Kaitha | 2B3D3b1c | 3 | 3 |  |  | 1 |
| 8 | Mohmamadpur Amiliya | 2B3D3c1d | 3 | 2 |  |  | 1 |

### 4.2.1 Watershed Committee

Watershed committee has been constituted in all eight nos of micro-watersheds partially by WDT and Gram Sabha village of micro watershed. These committees are registered under society Registration Act 1860. Capacity building trainings will be given to the watershed committee by WDT. The watershed committee has a pivotal role to play during and after the project implementation period. Detail of W.C. is given below

Table no. 28: Details of Watershed Committees (WC)

| S. No | Name of WCs | Date of Registrati on as a Society | Name | Designatio n | M/F | SC | $\begin{aligned} & \mathrm{S} \\ & \mathbf{T} \end{aligned}$ | SF | $\begin{gathered} \mathbf{M} \\ \mathbf{F} \end{gathered}$ | LF | Landl ess | UG | SHG | GP | Any othe r | Ed. qualific ation | Function (s) assigned \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2B3D3c1e | Under <br> Progress | Sri Ram Kumar | President | M |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Karunesh Kumar | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |
| 2 | 2B3D3c2a |  | Sri Manfool | President | M |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Krunesh kumar | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 2 | 4 | 1 |  |  |  |  | H, I |
| 3 | 2B3D3c2b |  | Smt. Radeiya | President | F |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Avinash Chandra | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |
| 4 | 2B3D3b1 |  | Sri Chhedalal | President | F |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Shiv Mangal | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |
| 5 | 2B3D3b1a |  | Sri. Uma Shanker | President | F |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Mo. Sabeer | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |
| 6 | 2B3D3c1c |  | Smt. Ramdeiya | President | F |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Shivmangal | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |
| 7 | 2B3D3b1c |  | Sri Chhedi Lal | President | F |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Avinash Chandra | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |
| 8 | 2B3D3c1d |  | Sri Manfool | President | F |  |  |  | 1 |  |  |  |  |  |  |  | A,B, E |
|  |  |  | Sri Gayan Prakash | Secretary | M |  |  |  | 1 |  |  |  |  |  |  |  | C, D, G |
|  |  |  | 10 members | Member | M/F | 2 |  | 3 | 2 | 1 | 4 | 1 |  |  |  |  | H, I |

\# \# In column 17, only the letter assigned, as below, needs to be typed, except for ' J ', where the type may be specifically mentioned.
A PNP and PRA
B Planning
C Maintenance of Accounts
E Supervision of Construction activities
D Signing of cheques and making payments
G Verification \& Measurement
F Cost Estimation
I
Social Audit
H Record of labour employed
J Any other (please specity).

### 4.2.2 Watershed Development Team

As per as common guide line direction/ instruction given in para 5.3 point 40 P.I.A. has been constitute watershed development team as given below

## Table no.29 : Details of Watershed Development Teams (WDTs) in the project area

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Name of the PIA | Name of the water shed | Names of WDT members | M/F | Age | Qualification/ Experience | Description of professional training | Role/ <br> Function\#\# | Date of appointment of WDT member |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | Bhomi Sanrakshan Adhikari <br> Land development and water resources <br> Department <br> Farrukhabad (U.P.) | IWMP-III ${ }^{\text {rd }}$ | Dr. Ram Prakash | M | 26 | P.H.D. Ag. <br> Scientist | Agriculture | E | Under Progress |
|  |  |  | Shri Akil <br> Ahmad | M | 40 | Diploma in Ag. Engg. | Field Worker | H |  |
|  |  |  | Shri Mukhtiyar Khan | M | 40 | High School Ag. Diploma | Field Worker | J B |  |
|  |  |  | Smt. Poonam Devi | F | 33 | B.A. Social Worker | Social Moblizer | A |  |
|  |  |  | Sri Gyan Prakash | M | 43 | Sivil Engineer |  | C D F |  |

\# M - Male, F- Female
\# \#
A
B
D
F
H
J

In column 8, only the letter, assigned as below, needs to be typed, except for ' 3 ', where the type may be specifically mentioned.
Participatory Net Planning (PNP) and Participatory Rural Approach (PRA), Traning and Capacity Building
Planning
C Maintenance of Accounts

Signing of cheques and making payments
E Social audit
Engineering surveys, drawings and cost estimations
G Physical verification \& measurement
Record of labour employed
I Livelihood opportunities for landless
Post project operation, maintenance of assets

### 4.2.3 Self Help Group

4.2.4

The constitution of Self Help Groups have been constituted by W.C. in all micro watershed for generating income \& improved their social status with the help and financial support through scheme by technical support of P.I.A., detail of $24 \mathrm{SHG}_{\mathrm{s}}$ is given below

Table no. 30 SHG detail

| S.No. | Names of Watershed | Total no. of registered SHGs |  |  |  | No. of Members |  |  |  | No. of SC/ST in each category |  |  | No. of BPL in each category |  |  | Date of formation of SHGs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | With only <br> Men | With only Women | With Both | Total | Categories | M | F | Total | M | F | Total | M | F | Total |  |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 1. | 2B3D3c1e | 0 | 0 | 1 | 1 | (i) Landless | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 1 | 2 | Under Progress |
|  |  |  |  |  |  | (ii) SF | 3 | - | 3 | - | - | - | - | - | - |  |
|  |  |  |  |  |  | (iii) MF | 2 | - | 2 | - | - | - | - | - | - |  |
|  |  |  |  |  |  | (iv) LF | 1 | - | 1 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 1 | 1 |  | 8 | 2 | 10 | 1 | 1 | 2 | 1 | 1 | 2 |  |
| 2 | 2B3D3c2a | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 3 | 2B3D3c2b | 0 | 0 | 7 | 7 | (i) Landless | 15 | 5 | 20 | 5 | 2 | 7 | 7 | 2 | 9 |  |
|  |  |  |  |  |  | (ii) SF | 30 | 5 | 35 | 4 | 2 | 6 | 3 | 2 | 5 |  |
|  |  |  |  |  |  | (iii) MF | 10 | - | 5 | 3 | - | 3 | 2 | - | 2 |  |
|  |  |  |  |  |  | (iv) LF | 12 | 1 | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 7 | 7 |  | 67 | 11 | 78 | 12 | 4 | 16 | 12 | 4 | 16 |  |
| 4 | 2B3D3b1 | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2B3D3b1a | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 | Under Progress |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 6 | 2B3D3c1c | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 7 | 2B3D3b1c | 0 | 0 | 3 | 3 | (i) Landless | 6 | 2 | 8 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 11 | 4 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 28 | 5 | 33 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 8 | 2B3D3c1d | 0 | 1 | 2 | 3 | (i) Landless | 5 | 11 | 16 | 8 | 9 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 1 | 2 | 3 |  | 27 | 19 | 46 | 14 | 11 | 10 | 11 | 3 | 14 |  |

(M- Male, F- Female)

### 4.2.4 User Group

The following user's group are identified and constituted in all micro watershed committee in presence of Watershed Development Team for implementation of watershed work proper use and management of all engineering and vegetative measure to be creating/ constructing under watershed through scheme. Detail of user's group are given below

Table no. 31: UGs detail

| S.No. | Names of Watershed | Total no. of registered UGs |  |  |  | No. of Members |  |  |  | No. of SC/ST in each category |  |  | No. of BPL in each category |  |  | Date of formation of UGs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | With only <br> Men | With only Women | With Both | Total | Categories | M | F | Total | M | F | Total | M | F | Total |  |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 1. | 2B3D3c1e | 0 | 1 | 2 | 3 | (i) Landless | 5 | 11 | 16 | 8 | 9 | 3 | 5 | 2 | 7 | UNDER PROCESS |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 1 | 2 | 3 |  | 27 | 19 | 46 | 14 | 11 | 10 | 11 | 3 | 14 |  |
| 2 | 2B3D3c2a | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 3 | 2B3D3c2b | 0 | 0 | 3 | 3 | (i) Landless | 7 | 3 | 10 | 3 | 2 | 5 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 11 | 5 | 16 | 4 | 2 | 6 | 3 | 2 | 5 |  |
|  |  |  |  |  |  | (iii) MF | 5 | - | 5 | 3 | - | 3 | 2 | - | 2 |  |
|  |  |  |  |  |  | (iv) LF | 3 | 1 | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 26 | 9 | 35 | 10 | 4 | 14 | 10 | 4 | 14 |  |
| 4 | 2B3D3b1 | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 5 | 2B3D3b1a | 0 | 0 | 3 | 3 | (i) Landless | 5 | 2 | 7 | 2 | 1 | 3 | 5 | 2 | 7 | UNDER PROCESS |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 6 | 2B3D3c1c | 0 | 0 | 1 | 1 | (i) Landless | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 1 | 2 |  |
|  |  |  |  |  |  | (ii) SF | 3 | - | 3 | - | - | - | - | - | - |  |
|  |  |  |  |  |  | (iii) MF | 2 | - | 2 | - | - | - | - | - | - |  |
|  |  |  |  |  |  | (iv) LF | 1 | - | 1 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 5 | 32 | 8 | 2 | 10 | 11 | 3 | 14 |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 2B3D3b1c | 0 | 0 | 3 | 3 | (i) Landless | 6 | 2 | 8 | 2 | 1 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 11 | 4 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 28 | 5 | 33 | 8 | 2 | 10 | 11 | 3 | 14 |  |
| 8 | 2B3D3c1d | 0 | 1 | 2 | 3 | (i) Landless | 5 | 11 | 16 | 8 | 9 | 3 | 5 | 2 | 7 |  |
|  |  |  |  |  |  | (ii) SF | 12 | 3 | 15 | 4 | 1 | 5 | 3 | 1 | 4 |  |
|  |  |  |  |  |  | (iii) MF | 7 | - | 7 | 2 | - | 2 | 3 | - | 3 |  |
|  |  |  |  |  |  | (iv) LF | 3 | - | 4 | - | - | - | - | - | - |  |
|  | Total | 0 | 0 | 3 | 3 |  | 27 | 19 | 46 | 14 | 11 | 10 | 11 | 3 | 14 |  |

(M- Male, F- Female)
4.2.5 Focused group discussion

Photographs

## FOCUSSED GROUP DISSCUSSION

### 4.3 PROJECT IMPLEMENTING AGENCIES

U.P. Government, Land Development Water Resources Department Section-1 Lucknow has nominated as PIA to Bhoomi Sanrakshhan Unit, Land Development Water Resources Department Farrukhabad for IWMP III ${ }^{\text {rd }}$ vide letter no-666(10)/54-1-101(9)02008 dated 25-05-2010

Table no. 32: Project Implementing Agency (PIA)

| S.No. | Particulars of PIA |  |
| :--- | :--- | :--- |
| (i) | Date of selection of PIA | 25.05 .2011 |
| (ii) | Type of organization | Govt. organization |
| (iii) | Name of organization \# | DoLR |
| (iv) | Designation \& Address | BSA, IWDP, Farrukhabad |
| (v) | Telephone |  |
| (vi) | Fax |  |
| (vii) | E-Mail | iwmp_Farrukhabadup@rediffmail.com |

\# Only the letter assigned to each type, as given below, needs to be typed.

A Line Dept.
C Govt. Institute
E Zila Parishad
G Voluntary Organisations

B Autonomous organization
D Research Bodies
F Intermediate Panchayat
H Any other (please specify).

Table no 33: Staff at PIA level

| S.No. | Name | Desingnation | Qualification |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 |
| 1) | Shree Sudarshan Yadav | D.D | B.tech. Ag. Engg. |
| 2) | „, N.M. Diwakar | B.S.A | Ag. Engg. Diploma |
| 3) | „ Ramendra Singh Kushwaha | Junior Engineer | Civil Engg. Diploma |
| 4) | ,, Akil Ahamd | Junior Engineer | Ag. Engg. Diploma. |
| 5) | Ramautar Shukla | Draughtsman | M.A. |
| 6) | ,, Ajay Kumar Gupta | Accountant | B.com |
| 7) | , Babulal | Sr. Clerk | B.A. |
| 8) | „, Shailendra Kumar | Jr. Clerk | B.sc., B.ed. |
| 9) | „ Prabhudayal | Tracer | Intermediate |
| 10) | ,, Mukhtiyar Khan | ASCI | High ag. Diploma |
| 11) | „, Anil Kumar Katiyar | Irrigation Sup. | Intermediate |
| 12) | ,, Bheem Shanker Yadav | Irrigation Sup. | M.A. |
| 13) | ,, Babu Singh Verma | Irrigation Sup. | Intermediate |
| 14) | ,, Prem Shanker Mishra | Irrigation Sup. | B.A. |
| 15) | , Amar Singh Kuril | Munshi | B.A. |
| 16) | ,, Kamlesh Kumar | Seenchpal | Intermediate |
| 17) | ,, Manoj Sharma | Seenchpal | Intermediate |
| 18) | ,, Ajay Kumar | Seenchpal | B.Sc. Ag. |
| 19) | ,, Anil Kumar Katiyar | Seenchpal | Intermediate |
| 20) | ,, Vikas Chandra Katiyar | Seenchpal | Intermediate |
| 21) | , Sishupal Singh | Driver | Literate |
| 22) | ,, Virendra Kumar | $4^{\text {th }}$ Class | Jr. High School |
| 23) | ,, Hari Prakash | 4th Class | Jr. High School |
| 24) | ,, Mahmood | 4th Class | Literate |
| 25) | ,, Satish Chandra | 4th Class | Jr. High School |
| 26) | , Ramautar | 4th Class | Jr. High School |

Watershed management as a strategy has been adopted by Government of India especially in the rainfed region of semi arid tropics. These region are characterized by low and undependable rain, low soil fertility, poor infrastructure development, low literacy and high incidence of migration. Several studies have identified that there is a dire need of a systematic and scientific approach to deal with the watershed development. The common guideline generates a fresh and flexible framework for the next generation watershed development.

### 4.4.1 Scientific Planning

## i) Cluster Approach

This envisages a broader vision of Geo-hydrological unit which involves treating a cluster of micro watershed. The IWMP I ${ }^{\text {nd }}$ Farrukhabad watershed project consist of nine micro watershed

## ii) Base line Survey

To access the impact of any watershed development programme a detailed baseline survey has to be conducted. This acts a benchmark for any intervention during and post implementation of any development programme. A detailed baseline survey was undertaken which involved household census survey, Bio-physical survey and Village level data collection from PIA. Household census survey includes a detailed questionnaire which was been filled by visiting each and every household in the village. This gave in the details of the demographic profile of the village, the literacy percentage, SC/ST population, number of BPL household, cattle population, net consumption rate in the IWMP-III ${ }^{\text {rd }}$, average milk production of the cattle and various schemes running and their benefits. Bio-physical survey was undertaken to identify various natural resources available in the village. It included the soil typology, well in the area, crop taken in the field, Cropping pattern, fertilizer used and various sources of irrigation in the field.

## iii) Participatory Rural Appraisal (PRA)

The past experience of watershed has given tremendous input to focus on creating accountability of the stakeholders towards the programme. This has created an emphasis to include all the stakeholder communities and their local and indigenous Technological Knowledge (ITK) while planning for any activity. Participatory approach provides a new path for planning, implementing, and monitoring
and post- withdrawal activities with a complete accountability of the stakeholders. Various PRA techniques like resource mapping, social mapping, and season calendars were used to understand the physical and social orientation of the village in general and watershed in specific. These tools put the villagers in ease than the complicated questionnaires. Various tools like Matrix ranking, Venn diagram were used to identify various local vegetations (apt for afforestation), Fodders crops, various institution and their significance in the life of the farmers
iv) Use of GIS and Remote sensing for planning

Use of various high science tools has been promoted at various stages of watershed development.

## a) Prioritization

Geographical Information System (GIS) has been used for prioritization process. Various layer maps were created like Geomorphological, Soil, BPL Population, SC/ST population, Ground water Status, Drinking water situation Slope percent. These were all given proper weight age according to the DoLR specification. This helped in prioritization of various watershed areas.

## b) Planning

A action plan matrix was formulated by State Level Nodal Agency (SLNA) taking into account various features like the slope percent, soil Depth, Soil Texture, Soil erosion in the area for wasteland, forest land and agricultural land. Global positioning System (GPS) was used to identify each and every water conservation structures available in the project area. This was used to create a map. Contour Map of vertical interval of 1 meter at a scale of 1:8000 was used for identifying various locations for soil and water conservation structures.

## c) Hydrological modelling

Hydrology modelling technique was used for locating drainage, stream length, flow direction, sink, and flow accumulation. This model overlaid over cadastral map to calculate the catchments area of each structures like the gully plug etc. This has helped to remove the human error which generally occurs while calculating the catchments area of a check dam.

Table no. 33: Details of Scientific Planning and Inputs in IWMP projects

| Scientific criteria/ inputs used | Whether scientific criteria was used |
| :--- | :--- |
| (A) Planning |  |
| Cluster approach | Yes |
| Whether technical back-stopping for the project has been arranged? If yes, mention the name of the Institute |  |
| Baseline survey | Yes |
| Hydro-geological survey | Yes |
| Contour mapping | Yes |
| Participatory Net Planning (PNP) | Yes |
| Remote sensing data-especially soil/ crop/ run-off cover |  |
| Ridge to Valley treatment |  |
| Online IT connectivity between | Yes |
| (1) Project and DRDA cell/ZP | Yes |
| (2) DRDA and SLNA | Yes |
| (3) SLNA and DoLR |  |
| Availability of GIS layers | Yes |
| 1. Cadastral map | Yes |
| 2. Village boundaries | Yes |
| 3. Drainage | Yes |
| 4. Soil (Soil nutrient status) | Yes |
| 5. Land use | Yes |
| 6. Ground water status |  |


| $\mathbf{1}$ |  |
| :--- | :--- |
| 7. Watershed boundaries | Yes |
| 8. Activity | Yes |
| Crop simulation models\# | No |
| Integrated coupled analyzer/ near infrared visible spectroscopy/ medium spectroscopy <br> for high speed soil nutrient analysis | No |
| Normalized difference vegetation index (NDVI)\# | No |
| Weather Station |  |
| (B) Inputs | No |
| 1. Bio-pesticides | No |
| 2. Organic manures | Yes |
| 3. Vermicompost | Yes |
| 4. Bio-fertilizer | Yes |
| 5. Water saving devices | Yes |
| 6. Mechanized tools/ implements | Yes |
| 7. Bio-fencing | Yes |
| 8. Nutrient budgeting | No |
| 9. Automatic water level recorders \& sediment samplers | No |

### 4.5 Convergence of watershed programmes

4.5.1 Earthen bund, contour bund, percolation tank, injection well will be made in watershed area convergence with MNREGS
4.5.2 Soil health card, crop demonstration, kisan gosthi, kisan mela, farmer's school also organized in watershed area under many scheme of department of Agriculture.
4.5.3 Composite fish farming or mixed fish farming popularized in this area with Department of fisheries.
4.5.4 Animal health camp, fodder development, vaccination work also made through Veterinary Department.
4.5.5 Aforestation in project area also done with Forest Department.
4.5.6 Dry land horticulture also convergence with department of horticulture.

Table no. 34 : Details of Convergence of other Schemes in the Project area with IWMP Project

| S.No. | Name of the MW | Names of Departments with Schemes converging with IWMP* | Fund made available to IWMP project due to convergence (Rs. In lakh) | Was this fund included in Rs. 12,000/15,000 Per ha |  | Name of activity/task/structure undertaken with converged funds <br> (a) Structures <br> (b) Livelihoods <br> (c) Production System | Reference no. of activity/task/structure in DPR | Level at which decision for convergence was taken \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Yes | No |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1 | 2B3D3c1e | MNREGS | 4.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.40 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.10 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.20 |  | No | b, c | 5 | PIA |
|  |  | F | 0.30 |  | No | b, c | 5 | PIA |
|  |  | Total | 5.00 |  | No |  |  |  |
| 2 | 2B3D3c2a | MNREGS | 15.00 |  | No | a | 5 | DRDA |
|  |  | DA | 1.50 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.30 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.40 |  | No | b, c | 5 | PIA |
|  |  | F | 0.30 |  | No | b, c | 5 | PIA |
|  |  | Total | 17.50 |  | No |  |  |  |
| 3 | 2B3D3c2b | MNREGS | 17.00 |  | No | a | 5 | DRDA |
|  |  | DA | 1.70 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.50 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.50 |  | No | b, c | 5 | PIA |
|  |  | F | 0.30 |  | No | b, c | 5 | PIA |
|  |  | Total | 19.00 |  | No |  |  |  |
| 4 | 2B3D3b1 | MNREGS | 14.00 |  | No | a | 5 | DRDA |
|  |  | DA | 1.40 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.30 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.40 |  | No | b, c | 5 | PIA |
|  |  | F | 0.45 |  | No | b, c | 5 | PIA |
|  |  | Total | 16.55 |  | No |  |  |  |
| 5 | 2B3D3b1a | MNREGS | 5.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.50 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.20 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.20 |  | No | b, c | 5 | PIA |
|  |  | F | 0.20 |  | No | b, c | 5 | PIA |
|  |  | Total | 6.10 |  | No |  |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 2B3D3c1c | MNREGS | 8.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.60 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.30 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.30 |  | No | b, c | 5 | PIA |
|  |  | F | 0.25 |  | No | b, c | 5 | PIA |
|  |  | Total | 9.45 |  | No |  |  |  |
| 7 | 2B3D3b1c | MNREGS | 11.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.90 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.40 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.45 |  | No | b, c | 5 | PIA |
|  |  | F | 0.60 |  | No | b, c | 5 | PIA |
|  |  | Total | 13.35 |  | No |  |  |  |
| 8 | 2B3D3c1d | MNREGS | 20.50 |  | No | a | 5 | DRDA |
|  |  | DA | 1.60 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.50 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.50 |  | No | b, c | 5 | PIA |
|  |  | F | 0.60 |  | No | b, c | 5 | PIA |
|  |  | Total | 22.70 |  | No |  |  |  |
|  |  | Grand Total | 109.65 |  | No |  |  |  |

\# only letter (a) or (b) or (c) needs to be filled. In case more than one activity has been undertaken all the concerned letters may be indicated e.g. (a) + (b)
\$ WC/GP/WDT/PIA/DRDA cell/ZP/DPC/SLNA / DoLR- only initials as indicated here need to be entered.

* DA= Department of Agriculture, DHO= Department of Horticulture, VO= Department of Veterinary, DF= Department of Fisheries, F= Forest


## 5. MANAGEMENT /ACTION PLAN

### 5.1 PREPARATORY PHASE

### 5.1.1 Entry Point Activities

Integrated Watershed Development Programme 6 is aimed at the socio economic up liftments of the dweller of watershed area and to create trust about the programme to be implemented so that they can coordinate in participatory mode for the success of the programme. As per the new common guidelines total financial outlay for the entry point activities is $4 \%$ of the total project cost. To increase the per capita availability of drinking water older wells of the village will be renovated as well as pacca jagat will be constructed, to increase the irrigation water availability older bundhies which are already existed but not functioning will be reconstructed/ renovated. Repairing and maintenance of water bodies have been proposed on priority basis. School lies in the watershed areas will be equipped with drinking water facility l. To approach watershed village construction and repairing of damaged pulia has also been proposed and construction of women bathrooms besides hand pump or wells. Total estimated cost for these activities is Rs 25.66 Lacs.

Table no. 36: Entry point activities (EPA)
(All financial figures in lacs Rs.)

| S.no. | Names of the Villages | $\begin{gathered} \text { Amount } \\ \text { earmarked } \\ \text { for EPA } \end{gathered}$ | Entry point Activities planned | Estimated cost | Expected outcome | Name of agency which selected the EPA\# | Expected month \& year of completion (mm/yyyy) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 2B3D3c1e | 2.10 | Repair of well/ Pacca jagat-2 | 1.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-1 | 0.100 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-1 | 1.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of P.School Class Room | 0.450 | - | WC, PIA, WDT | March, 2011 |
| 2 | 2B3D3c2a | 7.49 | Repair of well/ Pacca jagat-6 | 3.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-6 | 1.690 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-2 | 2.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of P.School Class Room | 0.870 |  |  |  |
| 3 | 2B3D3c2b | 4.46 | Repair of well/ Vikash Munch-4 | 2.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-4 | 1.200 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of P.School Class Room | 0.260 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-1 | 1.000 | - | WC, PIA, WDT | March, 2011 |
| 4 | 2B3D3b1 | 2.54 | Repair of well/ Vikash Munch-2 | 1.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-1 | 0.300 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of P.School Class Room | 0.240 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-1 | 1.000 | - | WC, PIA, WDT | March, 2011 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2B3D3b1a | 2.16 | Repair of well/ Vikash Munch-1 | 0.500 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-1 | 0.300 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of Pnchayat ghar | 0.360 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-1 | 1.000 | - | WC, PIA, WDT | March, 2011 |
| 6 | 2B3D3c1c | 1.49 | Repair of well/ Vikash Munch-1 | 0.500 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-2 | 0.600 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of Pnchayat ghar | 0.390 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-0 | 0.000 | - | WC, PIA, WDT | March, 2011 |
| 7 | 2B3D3b1c | 2.54 | Repair of well/ Vikash Munch-2 | 1.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-3 | 0.900 |  | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of Pnchayat ghar | 0.640 |  | WC, PIA, WDT | March, 2011 |
| 8 | 2B3D3c1d | 2.88 | Repair of well/ Vikash Munch-2 | 1.000 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of damaged Pulia-2 | 0.600 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Repairing of Pnchayat ghar | 0.280 | - | WC, PIA, WDT | March, 2011 |
|  |  |  | Traveler Tin shed-1 | 1.000 | - | WC, PIA, WDT | March, 2011 |
|  | Total | 25.66 |  | 25.66 |  |  |  |

\# was the EPA selected by Gram Panchayat/WC/PIA/WDT/Any other (please specify)
Table no. 37: Other activities of preparatory phase

| $\begin{gathered} \text { S. } \\ \text { No } \end{gathered}$ | Item | Initiation of village level institution | Capacity building | IEC activities | Baseline survey | Hydrogeological survey | Identifying technical support agencies | Resource agreements | Preparation of DPR | Evaluation of DPR | Any other (please specify) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Estimated cost | 1.7 | 30.00 | 4.00 | 3.57 | 1.428 | - | - | 1.428 | 0.714 | - |
| 2 | Status of the activity \# | Under Complete | Under Complete | Under Complete | Complete | Complete | Complete |  | Complete | - |  |
| 3 | Expected month \& year of completion (mm/yyyy) | March, $2011$ | March, $2011$ | March, $2011$ | $\begin{aligned} & \text { March, } \\ & 2010 \end{aligned}$ | March, $2010$ | March, $2010$ | - | March, 2010 | - |  |

### 5.1.2.1 Institution

Table no. 38: List of approved Training Institutes for capacity Building in the project area

| S.No. | Name of the Training Institute | Full Address with contact no., website \& e-mail |  <br> Designation of the Head of Institute | Type of Institute | Area (s) of specialization | Accreditation details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Krishi Vigyan Kendra | Farrukhabad (UP) | Programme Coordinator | Research Extension \& | Agriculture, Horticulture, A. Husbandry, Fisheries, | GOI |
| 1 | Krishi Vigyan Kendra | Pilkhi haldharpur Mau(UP), Naveen_hamraj@memory.com 09451891755 | Programme Coordinator | Research <br>  | Agriculture, Horticulture, A. Husbandry, Fisheries, Entrepreneurship, Livelihood and Capacity building etc | GOI |
| 2 | Directorate of Seed Reasearch | DSR, Kusmaur, Mau (U.P.), 05472530080, <br> http//www.icar.org.in.nbaim/indexhtm | Director, Dr. Mandal | Research | Agriculture | GOI |
| 3 | NBAIM | NBAIM, Kusmaur, Mau (U.P.), 05472530080, <br> http//www.icar.org.in.nbaim/indexhtm | Director, Dr. D.K.Arora | Research | Agriculture | GOI |
| 4 | Gramsthali Sikshha Parishad | 29 rajrajeshwari nagar colony, Gilat Bajar, Varanasi-221002, <br> abhaigkp@rediffmail.com, +91532107394 | President, Dr R. K. Singh | NGO | Capacity Buildings, Production System | NGO |
| 5 | G.K.S.S. | SA-19/13 K-2 Janak nagar, Pandeypur <br> Varanasi, +919838001699 <br> Ashwini.yes21@gmail.com | President, Dr. A.K. Singh | NGO | Capacity Buildings, Production System | NGO |

### 5.1.2.2 Capacity Building

Capacity building and training are the most important components of watershed management programme both for the field level project staff/ officers and functionaries of people institutions i.e. watershed community. Apart from enhancing technical skill of the project staff, this would also provide opportunities to community members to develop their capacity as the feature custodians of the programmes after project's withdrawal. IWMP III $^{\text {rd }}$ Farrukhabad financial outlay for capacity buildings is 5\% (Rs. 32.08) of the total project cost, out of which Rs 32.08 will be expanded for initition of village level institution.

Table no 39 : Capacity Building activities in the project

| S.No. | Project Stakeholders | Total no. of persons | No. of persons trained so far | No. of persons of be trained during current financial year | Sources of funding for training |  | Name and Address of the Institute where Trained |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | a) DoLR | b) any other <br> (pl. specify) |  |
| 1 | PIAs | 8 | 2 | 6 | DoLR |  | KVK, GSP,GKSS |
| 2 | WDTs | 32 | 12 | 20 | DoLR |  | KVK, GSP,GKSS |
| 3 | UGs | 155 | 52 | 103 | DoLR |  | KVK, GSP,GKSS |
| 4 | SHGs | 180 | 42 | 138 | DoLR |  | KVK, GSP,GKSS |
| 5 | WCs | 17 | 5 | 12 | DoLR |  | KVK, GSP,GKSS |
| 6 | GPs | 22 | - | 22 | DoLR |  | KVK, GSP,GKSS |
| 7 | Community | 1200 | - | 1200 | DoLR |  | KVK, GSP,GKSS |
| 8 | Others (pl. specify) |  |  |  |  |  |  |

Table no 40: Detail of activities undertaken

| Strategy | Proposed activity | No. of Units | Unit cost | Total Cost |
| :---: | :---: | :---: | :---: | :---: |
| Capacity building Activities | Stakeholders - Scientists Interaction, | 15 | 0.10 | 1.00 |
|  | Training (2 days) | 100 | 0.05 | 5.00 |
|  | Vocational/employment Generation Training (5-10 days) | 100 | 0.10 | 10.00 |
|  | In-service Training. (3 days) | 20 | 0.10 | 2.00 |
|  | Exposure visit within State | 5 | 0.20 | 1.00 |
|  | Exposure visit out of State | 6 | 0.50 | 3.00 |
|  | Field days | 25 | 0.20 | 5.00 |
|  | Workshop | 5 | 0.60 | 3.00 |
|  | Total |  |  | 30.00 |

Table no 41 : Information, Education \& Communication (IEC) activities in the project area

| S.no. | Activity | Executing agency | Estimated expenditure (Rs.) | Expected Outcome (may <br> quantify wherever possible) |
| :--- | :--- | :--- | :---: | :---: |
| 1 | Street plays | Local Drama Groups | 100000.00 | Awareness about importance |
| of watershed project |  |  |  |  |
| 2 | Video Shows | IWMP, Farrukhabad | 100000.00 |  |
| 3 | Pamphlets and Poster | IWMP, Farrukhabad | 100000.00 |  |
| 4 | Banners and Hoardings | IWMP, Farrukhabad | 100000.00 |  |
|  |  | Total | $\mathbf{4 0 0 0 0 0 . 0 0}$ |  |

### 5.1.3 Detail Project Report

See table no. 37.

### 5.2 WORK PHASE

### 5.2.1 Soil and moisture conservation

For soil and moisture conservation, water resource development, horticulture, besides agro forestry vegetation / plantation work, engineering structure have also been proposed under the project. Engineering structure are important components of soil and water conservation that can play a vital role in erosion control on arable land. Engineering measure usually involves in creating mechanical barriers across the direction of flow of water and thus retards or retains runoff on the following principles:

- Increase the time of concentration.
- Break a long slope into short ones.
- Protection of drainage channel against damage.
- Prevent excessive soil and water losses.

It is very important to treat the ridge as this is where the major water resources originate. For the ridge area treatment of IWMP III watershed following structure are been Proposed after interaction between the watershed committee, Range Forest Officer (RFO) and other field staff of forest.

## A. Contour Bunding :

Contour bunding is and effective in erosion control and moisture conservation in dry areas having less than $2 \%$ slop to reduce the length of slope. Contour bund constructed against the slope in 1082.77 f lands with total estimated cost of Rs. 64.97 lacs
B. Graded Bund (Marginal and Peripheral Bund):

Marginal bunds are the engineering structure to reduce the volume and speed of runoff. Those locations where change in slope and soil texture founded there is peripheral bund will be constructed along with nala bank. Total proposed treatable area is 962.46 ha with financial outlay of Rs. 57.75 lacs

## C. Submergence Bundhies and Gully Plug:

Submergence bundhies will be constructed at middle reaches of watershed have in lesser slop. However, gully plug structure has been proposed to be formed on upper reaches / It order stream. Total propsed area for the structures jointly is 360.92 ha with total financial outlay of Rs. 21.66 lacs.

This generally includes water conservation or surface water storage structures. This being highly labour intensive, will involve more of manual labour; so, funds from National Rural Employment Guarantee Scheme (NREGS) can be taken.
2. Water Harvesting bundhies:

Water harvesting bundhies are primarily aimed at collecting and storing any form of water enter through rainfall, runoff or subsurface flow for multiple purpose. There will be 75 water harvesting bundhies with farm ponds structure on 2673.50 ha of land will be constructed on lower reaches of the watershed. Estimated financial outlay is Rs. 78.01 lacs.
3. Agroforestry:

About 550 ha lands will be taken from the waste land faling in the class-VII category in the watershed. These lands will be planted with subabool in which urd, moong, til etc planted as intercrop, subabool will be used as fuel as well as fodder
4. Dry Land Horticulture

About 121 ha area will take for the plantation of fruit trees like aonla, bael, ber, karaunda, mango, will be planted at suitable spacing in the watershed.
Table no 42 : Activities related to Surface Water resources in the project areas @

| $\begin{aligned} & \mathrm{S} . \\ & \mathbf{N} \\ & \mathbf{0} \end{aligned}$ | Names of villages | Type of structures | Pre-project |  |  | Proposed target |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | No. | Area rrigated (ha) | Storage capacity | Augmentation/repair of existing structures |  |  |  | Construction of new structures |  |  |  | Total target |  |  |
|  |  |  |  |  |  | No. | Area rrigated (ha) | Storage capacity (lit) | Estimated cost (Rs in laks) | No. | Area rrigated (ha) | Storage capacity (lit) | Estimated cost(Rs in laks) | Area rrigated <br> (ha) | Storage capacity (lit) | Estimated cost (Rs in laks) |
| 1 | 2B3D3c1e | (ii) Pond | 2 | 10 | 10000 | 2 | 15 | 15000 | 2.00 | 15 | 15 | 15000 | 4.000 | 30.00 | 30000 | 6.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 9 | - | 9000 | 0.225 | - | 9000 | 0.225 |
| 2 | 2B3D3c2a | (ii) Pond | 2 | 10 | 10000 | 2 | 15 | 15000 | 2.00 | 30 | 30 | 30000 | 8.00 | 45.00 | 45000 | 10.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 26 | - | 26000 | 0.65 | - | 26000 | 0.65 |
| 3 | 2B3D3c2b | (ii) Pond | 8 | 40 | 40000 | 8 | 60 | 60000 | 8.00 | 45 | 45 | 45000 | 12.00 | 105.00 | 105000 | 20.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 46 | - | 46000 | 1.15 | - | 46000 | 1.15 |
| 4 | 2B3D3b1 | (ii) Pond | 3 | 15 | 15000 | 3 | 22.5 | 22500 | 3.00 | 15 | 15 | 15000 | 4.000 | 37.5 | 37500 | 7.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 6 | - | 6000 | 0.15 | - | 6000 | 0.15 |
| 5 | 2B3D3b1a | (ii) Pond | 3 | 15 | 15000 | 3 | 22.5 | 22500 | 3.00 | - | - | - | - | 22.5 | 22500 | 3.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 3 | - | 3000 | 0.075 | - | 3000 | 0.075 |
| 6 | 2B3D3c1c | (ii) Pond | 3 | 15 | 15000 | 3 | 22.5 | 22500 | 3.00 | 15 | 15 | 15000 | 4.000 | 37.5 | 37500 | 7.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 26 | - | 26000 | 0.65 | - | 26000 | 0.65 |
| 7 | 2B3D3b1c | (ii) Pond | 2 | 10 | 10000 | 2 | 15 | 15000 | 2.00 | 15 | 15 | 15000 | 4.000 | 30.00 | 30000 | 6.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 32 | - | 32000 | 0.81 | - | 32000 | 0.81 |
| 8 | 2B3D3c1d | (ii) Pond | 5 | 25 | 25000 | 5 | 37.5 | 37500 | 5.00 | 30 | 30 | 30000 | 8.00 | 67.5 | 67500 | 13.00 |
|  |  | (iv) Injection well | - | - | - | - | - | - | - | 38 | - | 38000 | 0.95 | - | 38000 | 0.095 |
|  | Total |  | 28 | 140 | 140000 | 28 | 210 | 210000 | 28 | 351 | 165 | 351000 | 48.66 | 375 | 561000 | 75.805 |

@ 50 \% work will be done on public asset and 50\% done on community asset.

Table no. 43: Technical detail of Farm Ponds and Injection Well

| S. No | Particulars | Value | Ponds | Injection Well |
| :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1}$ | Top area | $\mathrm{M}^{2}$ | $\mathrm{M}^{2}$ | $500.00(25 \mathrm{X} 20)$ |
| 2 | Bottom area | M | $300.00(20 \mathrm{X} 15)$ |  |
| 3 | Depth | - | 2.50 |  |
| 4 | Side Slope | $2: 1$ | 1.00 |  |

Table no 44: Activities related to recharging ground water resources in the project areas @

| $\begin{aligned} & \text { S.N } \\ & \text { o. } \end{aligned}$ | Names of villages | Type of structures | Pre-project |  | Proposed target |  |  |  |  |  |  |  | Expected month \& year of completion (mm/yyyy) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | No. | Area rrigated (ha) | Augmentation/repair of existing structures |  |  | Construction of new structures |  |  | Total target |  |  |
|  |  |  |  |  | No. | Area rrigated <br> (ha) | Estimated cost | No. | Area rrigated <br> (ha) | Estimated cost | Area rrigated (ha) | Estimated cost |  |
| 1 | 2B3D3c1e | (i) Open wells | 2 | 1.00 | 2 | 2.00 | 0.12 | - | - | - | 2.00 | 0.12 | June, 2012 |
|  |  | (ii) Bore wells | 2 | 2.00 | 2 | 8.00 | 0.48 | - | - | - | 8.00 | 0.48 | May, 2012 |
| 2 | 2B3D3c2a | (i) Open wells | 2 | 1.00 | 2 | 5.00 | 0.30 | - | - | - | 5.00 | 0.30 | June, 2012 |
|  |  | (ii) Bore wells | 5 | 5.00 | 5 | 20.00 | 1.20 | - | - | - | 20.00 | 1.20 | May, 2012 |
| 3 | 2B3D3c2b | (i) Open wells | 1 | 0.50 | 1 | 2.00 | 0.12 | - | - | - | 2.00 | 0.12 | June, 2012 |
|  |  | (ii) Bore wells | 4 | 4.00 | 4 | 18.00 | 1.08 | - | - | - | 18.00 | 1.08 | May, 2012 |
| 4 | 2B3D3b1 | (i) Open wells | 3 | 1.50 | 2 | 4.00 | 0.24 | - | - | - | 4.00 | 0.24 | June, 2012 |
|  |  | (ii) Bore wells | 6 | 6.00 | 3 | 11.00 | 0.66 | - | - | - | 11.00 | 6.00 | May, 2012 |
| 5 | 2B3D3b1a | (i) Open wells | 1 | 0.50 | 1 | 2.00 | 0.12 | - | - | - | 2.00 | 0.12 | June, 2012 |
|  |  | (ii) Bore wells | 3 | 3.00 | 3 | 18.00 | 1.08 | - | - | - | 18.00 | 1.08 | May, 2012 |
| 6 | 2B3D3c1c | (i) Open wells | - | - | - | - | - | - | - | - | - | - | - |
|  |  | (ii) Bore wells | 7 | 7.00 | 2 | 10.00 | 0.60 | - | - | - | 10.00 | 6.00 | May, 2012 |
| 7 | 2B3D3b1c | (i) Open wells | 2 | 1.00 | 2 | 5.00 | 0.30 | - | - | - | 5.00 | 0.30 | June, 2012 |
|  |  | (ii) Bore wells | 2 | 5.00 | 3 | 10.00 | 0.60 | - | - | - | 10.00 | 0.60 | May, 2012 |
| 8 | 2B3D3c1d | (i) Open wells | 2 | 1.00 | 2 | 5.00 | 0.30 | - | - | - | 5.00 | 0.30 | June, 2012 |
|  |  | (ii) Bore wells | 5 | 10.00 | 5 | 30.00 | 1.80 | - | - | - | 30.00 | 1.80 | May, 2012 |
|  |  | Total for the project | 47 | 48.5 | 39 | 150 | 9 | 0 | 0 | 0 | 150 | 19.74 |  |

Above all the assets only $20 \%$ under community and rest related with private sector.
Table 45: Activities executed by User Groups in the Project @

| S.no | Names of Project | Major activities |  |  |  | No. of UGs involved | Estimated Cost (Rs.) | Amount of WDF to be collected (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Structure/activity proposed |  |  | Expected month \& year of completion (mm/yyyy) |  |  |  |
|  |  | Type | No.\# | Treatment |  |  |  |  |
| 1 | IWMP III ${ }^{\text {nr }}$ | Structure work |  | Enginering | March, 2015 | 30 | 362.34 laks | 18.18 lakh |

Table no 46: Details of engineering structures in watershed works

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Names of villages | Name of structure | Type of treatment |  |  | Type of land |  |  | Executing agency | Total target |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { (i) Ridge } \\ & \text { area (R) } \end{aligned}$ | (ii) Draina ge line (D) | (iii) <br> Land dev. <br> (L) | (i) <br> Private | (ii) Comm unity | (iii) Others (pl. specify ) | (i)UG <br> (ii) SHG <br> (iii) Others (pl. specify) | $\begin{gathered} \text { No. of } \\ \text { units } \\ \text { (no./cu.m. } \\ \text { /rmt) } \end{gathered}$ | Estimated cost (Rs. In lakh) |  |  |  | Expected month \& year of completion (mm/yyyy) |
|  |  |  |  |  |  |  |  |  |  |  | M | W | 0 | T |  |
| 1 | 2B3D3c1e | Contour bunding | R | - | - | P | C | - | UG \& DoLR | 132.01 |  |  |  | 4.00 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \& DoLR | 66.00 |  |  |  | 2.00 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 69.63 |  |  |  | 2.11 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 92.73 |  |  |  | 2.81 | May, 2014 |
| 2 | 2B3D3c2a | Contour bunding | R | - | - |  | P | - | UG \& DoLR | 264.03 |  |  |  | 8.00 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \&DoLR | 169.63 |  |  |  | 5.14 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 105.61 |  |  |  | 3.20 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 102.31 |  |  |  | 3.10 | May, 2014 |
| 3 | 2B3D3c2b | Contour bunding | R | - | - |  | P | - | UG \& DoLR | 528.05 |  |  |  | 8.00 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \& DoLR | 312.87 |  |  |  | 5.48 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 168.31 |  |  |  | 5.10 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 170.95 |  |  |  | 5.18 | May, 2014 |
| 4 | 2B3D3b1 | Contour bunding | R | - | - |  | P | - | UG \& DoLR | 151.81 |  |  |  | 4.60 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \& DoLR | 110.56 |  |  |  | 3.35 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 65.01 |  |  |  | 1.97 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 108.25 |  |  |  | 3.28 | May, 2014 |
| 5 | 2B3D3b1a | Contour bunding | R | - | - |  | P | - | UG \&DoLR | 73.59 |  |  |  | 2.23 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \& DoLR | 70.62 |  |  |  | 2.14 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 34.32 |  |  |  | 1.04 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 47.19 |  |  |  | 1.43 | May, 2014 |
| 6 | 2B3D3c1c | Contour bunding | R | - | - |  | P | - | UG \& DoLR | 174.25 |  |  |  | 5.28 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \&DoLR | 110.56 |  |  |  | 3.35 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 65.01 |  |  |  | 1.97 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \&DoLR | 85.80 |  |  |  | 2.60 | May, 2014 |
| 7 | 2B3D3b1c | Contour bunding | R | - | - |  | P | - | UG \& DoLR | 198.01 |  |  |  | 4.00 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \& DoLR | 85.47 |  |  |  | 2.50 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 50.82 |  |  |  | 1.54 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 37.95 |  |  |  | 1.15 | May, 2014 |
| 8 | 2B3D3c1d | Contour bunding | R | - | - |  | P | - | UG \& DoLR | 396.03 |  |  |  | 7.00 | May, 2012 |
|  |  | Graded bunding | - | D | - | - | C |  | UG \&DoLR | 285.82 |  |  |  | 3.60 | May, 2012 |
|  |  | Gully plug | - | D | - | - | C | - | UG \& DoLR | 148.51 |  |  |  | 4.50 | May, 2014 |
|  |  | Field bunds | - | - | L | P | C | - | UG \& DoLR | 193.39 |  |  |  | 5.86 | May, 2014 |
|  | Total |  |  |  |  |  |  |  |  | 4675.1 |  |  |  | 117.51 |  |

(M- Materials, W- wages, O- others, T- Total)

Table no 48: Total Treatment of Micro Watershed of IWMP III

| S.N. | Watershed Reaches | Proposed Work | Treatable Area (ha.) | CMT | Rate (Rs/CMT) | Proposed Cost (Rs in lacs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Upper Reaches | Contour Bund | 1082.77 |  | 30.30 | 64.97 |
|  |  | Guly Plug | 360.92 |  | 35.70 | 21.66 |
| 2 | Middle Reaches | Graded Bund (Marginal bund, Peripheral bund, Submergance bund, earthen check dam) | 962.46 |  | 35.71 | 57.75 |
|  |  | Agroforestry/ Horticulture | 267.35 |  | 60000/ha | 16.04 |
| 3 | Lower Reaches/ Drinage Line Treatment | Water Harvesting Bundhi | 2673.50 |  | 35.71 | 78.01 |
|  |  | Open well, Bore well |  | * | * | 14.00 |
|  |  | Farm Ponds, Injection well |  | * | * | 68.40 |
|  |  | Total | 5347.00 |  |  | 320.82 |

* details in table no 42 and 44
able no 49: Technical detail of engineering works in project area

| S. No. | Project | No of villages | Type of bund | Type of soil | Particulars (meter) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Top | Base | Height | Slope | Cross section |
| 1 | IWMP III ${ }^{\text {rd }}$ | 36 | Field Bund | Normal | 0.30 | 1.65 | 0.45 | 1.5:1 | 0.438 |
|  |  |  | Contour Bund | Clay | 0.45 | 1.65 | 0.60 | 1.0:1 | 0.63 |
|  |  |  |  | Loam | 0.45 | 2.25 | 0.60 | 1.5:1 | 0.81 |
|  |  |  |  | Sandy | 0.45 | 2.85 | 0.60 | 2.0:1 | 0.99 |
|  |  |  | Marginal/CRB \& peripheral Bund | Plain land | 0.60 | 3.60 | 1.00 | 1.5:1 | 2.10 |
|  |  |  |  | Undulating land | 1.00 | 4.00 | 1.00 | 1.5:1 | 2.50 |
|  |  |  | Gully Plug | At 3\% or above3 \% slope gully plug will be made between two drainage line with emergency temporary spill way |  |  |  |  |  |



NOMENCLATUR AND SYMBOLS OF TYPICAL DROP SPILLWAY


### 5.2.2 PROPOSED LAND USE

Watershed management plan for IWMP-III Farrukhabad watershed was prepared with specific objectives of food sufficiency and income and employment generation with environment security. In plan preparation due importance was given to topographic, land suitability, irrigation potentially, prevailing farming systems, micro farming situation, farming, farmers preferences and priorities along with economic and environment securities. Crop and tree selection and area distribution was done as per farmers priorities revealed through PRA exercise.

Technological options were blended with the ITK based on the latest available research/ experiment findings for this region. Due attention was given to the resource of the farmers and adjustments were made in capital intensive/high resource demanding technological outputs while making them adoptable to the resource poor farmers. Emphasis was given on maximum use of farm yard manure. The proposed land use plan of the watershed is shown in table.

Table no. 50: Present and proposed land use plan of the IWMP-IIIRD watershed

| S.No. | Land use | Present ( ha) |
| :--- | :--- | :---: |
| 1 | Agriculture | 5632.38 |
| a | Rainfed | $\mathbf{5 4 5 0 . 0 0}$ |
|  | I Crops | 4360.00 |
|  | II Agro-forestry | - |
| b | Irrigated | $\mathbf{6 2 0 . 0 0}$ |
|  | I Assured | 355.00 |
|  | II Partial | 265.00 |
| 2 | Waste land | $\mathbf{1 5 8 6 . 5 8}$ |
| a | Afforestation | - |
| b | Pasture | - |
| c | Untreatable | - |
| 3 | Village land | $\mathbf{-}$ |
|  | Total | $\mathbf{7 9 3 3 . 4 2}$ |

### 5.2.3 WATER RESOURCE DEVELOPMENT AND SOIL CONSERVATION MEASURES

## Status of Present Water Resources Utilization

The micro watersheds are having four seasonal water bodies on private as well as on community land. Management and maintenance of these water bodies is still in the hand of minor irrigation department. During good rainfall year these water bodies having full of water during kharif season. Before sowing of rabi season crops water from these water bodies is either used for supplementary irrigation for kharif crops or irrigating fields for rabi sowing or allowed to go as waste. After releasing water from bodies, submergence area also put under cultivation for rabi crops.

## Proposed plan for Irrigation Development of existing water resources

For efficient utilization of available water resources in the IWMP-III ${ }^{\text {rd }}$ watersheds, present system of irrigation and wastage of water during October-November need to be made more efficient from water management point of view by minimizing conveyance losses in the existing water courses. The up gradation of the existing system of irrigation will result in:
a. Minimization of conveyance losses
b. Increase in frequency of irrigation
c. Adoption of high yielding varieties of crops, and
d. Assured cultivation of cash Crops
e. Drinking water problem will also solved
f. Local eco system will also improved

## New water harvesting structures (Ponds)

Two new dug type water harvesting structures (pond) of capacity about 1400 cum (each) have been proposed to harvest excess runoff of the watershed. Harvested water will be used for supplementary irrigation and fish rearing. Details of these ponds have been given in the estimated budget in last.

## Crop production

## Mulching and crop residue management

The sources of mulching material as brought up mulch i.e. litter or pruned material of trees etc are scarce in the watershed. The weeds, in situ grown legume and multi purpose trees (as hedge row on marginal and degraded lands) are some of the options available with growers for mulching the rain-fed crops for moisture conservation, fertility restoration and other purposes. Therefore, weed mulching and hedge row of MPTs will be demonstrated in the watershed for benefit of the rural community.

## Green manuring

Intensive cropping with inadequate application of organic manures i.e. FYM, compost etc, has over exploited the existing agricultural production system in the watershed. In order to improve the fertility as well as physico- chemical properties of soils green manuring in-situ and ex-situ with suitable crops like dhaincha, sun-hemp and legumes are proposed to be demonstrated in the watershed areas of IWMP-III ${ }^{\text {rd }}$ watersheds.

## Vermi composting

In order to provide quality manure with high nutrient content to various field crops, vegetables and cash crops, to save time and proper disposal of on farm organic refuse and cow dung as well as to promote organic farming, vermin-composting will be demonstrated to the farmers so that within a short period they can be able to produce manure from organic waste.

## Crop rotation and intercropping

In order to diversify farm produce, minimize the farming risk, mitigate soil erosion, to ensure nutritional security and to optimize farm return, intercropping of legumes (black gram and green gram) in inter row spaces of bajra are proposed to be undertaken in the watershed during kharif season. Sustainable and profitable crop-rotations suiting to various needs of the people of the watershed will be demonstrated.

## Bio-fertilizers

The various beneficial bio-fertilizers like nitrogen fixers, phosphate solubliser and organic matter decomposers for both legumes and non legumes will be demonstrated in the farmer's field under the watershed villages.

## Tillage operations

Deep tillage technology developed at the NDUAT, Faizabad holds promising in enhancing post monsoon residual soil moisture conservation and improving the yield of subsequent mustard crop. This technology is proposed to be demonstrated for benefit of farmers in the watershed.

## Introduction of improved seeds of high yielding varieties (HYV)

Replacement of low yielding traditional varieties of Paddy, wheat, jowar, gram and lentil in the villages in the watershed with improved varieties is necessary for improving the productivity and farm income. These HYVs will be demonstrated in the watershed for the benefit of the farmers.

## Balanced fertilizer use

Inadequate and imbalanced fertilizer use in the Paddy, bajra and jowar during kharif season and in wheat, mustard, gram and lentil in rabi season are one of the major constraints in agricultural production system of the watershed. Therefore, fertilizer use in different crops will be demonstrated in the watershed for the benefits of the farming community.

## Control of insect pest and diseases

Aphid in the mustard and pod borer in gram are the major insects in the watershed areas leading to loss in crop productivity. Similarly white blister is also a common disease in the mustard crop. The management strategies of these insect pests and diseases will also be demonstrated in the watershed for benefit of the growers.

## Management of the crop

The recommended technology (13.7) of crop management will be demonstrated to the farmers in half plot trial approach so as to enable the farmers to assess the benefits and impact of each technology or package of practice for their ultimate adoption in the watershed. The interventions scheduled on prioritization of problems in the crop production following PRA and surveys target specifically solution of the each and problem related to the crop production as per interventions at 13.7. The specific problems, if any shall be dealt with contingency budget.

## Dry land Horticulture

About 121 ha of land is suitable for horticultural development. Species like Bael and Ber will be planted at suitable spacing in the watershed.

## Agri-Horticulture

Anola and sahjan would be a suitable horticultural crop to the locality. Therefore, about 55 ha land in the farmers field shall be selected and brought under Agri-horti system. The cropping system followed will be Bajra and Wheat.

## Plantation :

Fuel wood plantation: About 500 ha land will be taken the waste land falling in the class-IV category in the watershed. These lands will be planted with species like Prosopis juliflora Acacia nilatica, Prosopis cineraria and Holoptelia integrifolia.

Table no. 51: Details of activities connected with vegetative cover in watershed works

| S-NO. | Names of villages | Name of structure/work | Type of treatment |  |  | Type of land |  |  | Executing agency <br> (i) UG <br> (ii) SHG <br> (iii) Others (pl. specify) | Total target |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (i) Ridge area ( R | (ii) <br> Drainag e line (D) | $\begin{gathered} \text { (iii) } \\ \text { Land } \\ \operatorname{dev} .(L) \end{gathered}$ | (i) <br> Private | (ii) <br> Comm unity | $\begin{gathered} \text { (iii) } \\ \text { Others } \\ \text { (pl. } \\ \text { specify) } \end{gathered}$ |  | Area <br> (ha) | No. of Plants | Estimated cost (Rs. In lakh) | Expected month \& year of completion (mm/yyyy) |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 1 | 2B3D3c1e | Afforestation | R | D | L | P | C | - | DoLR, DF | 40.00 | 6240 | 2.40 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 2.00 | 312 | 0.12 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 2.00 | - | 0.12 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 15.00 | 2340 | 0.90 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 1.00 | - | 0.06 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 0.25 | - | 0.02 | August, 2010 |
| 2 | 2B3D3c2a | Afforestation | R | D | L | P | C | - | DoLR, DF | 92.00 | 14352 | 5.52 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 3.00 | 468 | 0.18 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 4.00 | - | 0.24 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 20.50 | 3198 | 1.23 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 1.00 | - | 0.06 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 1.00 | - | 0.06 | August, 2010 |
| 3 | 2B3D3c2b | Afforestation | R | D | L | P | C | - | DoLR, DF | 100.00 | 15600 | 6.00 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 10.00 | 1560 | 0.60 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 10.00 | - | 0.60 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 30.00 | 4680 | 1.80 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 2.00 | - | 0.12 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 1.50 | - | 0.15 | August, 2010 |
| 4 | 2B3D3b1 | Afforestation | R | D | L | P | C | - | DoLR, DF | 36.00 | 5616 | 2.16 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 3.00 | 468 | 0.18 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 3.0 | - | 0.18 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 16.00 | 2496 | 0.48 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 1.00 | - | 0.06 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 0.50 | - | 0.03 | August, 2010 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2B3D3b1a | Afforestation | R | D | L | P | C | - | DoLR, DF | 17.00 | 2652 | 1.02 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 1.50 | 234 | 0.09 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 1.5 | - | 0.09 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 10.00 | 1560 | 0.60 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 0.50 | - | 0.03 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 0.25 | - | 0.02 | August, 2010 |
| 6 | 2B3D3c1c | Afforestation | R | D | L | P | C | - | DoLR, DF | 30.00 | 4680 | 1.80 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 3.00 | 465 | 0.18 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 3.00 | - | 0.18 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 18.00 | 2808 | 1.08 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 1.00 | - | 0.06 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 0.50 | - | 0.03 | August, 2010 |
| 7 | 2B3D3b1c | Afforestation | R | D | L | P | C | - | DoLR, DF | 28.00 | 4368 | 1.68 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 2.50 | 360 | 0.15 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 2.50 | - | 0.15 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 16.00 | 2496 | 0.96 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 1.00 | - | 0.06 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 0.50 | - | 0.03 | August, 2010 |
| 8 | 2B3D3c1d | Afforestation | R | D | L | P | C | - | DoLR, DF | 100.00 | 1560 | 6.00 | May, 2012 |
|  |  | Agro-forestry | - | - | L | P | C | - | DoLR, UG, DF | 4.00 | 624 | 0.24 | July, 2012 |
|  |  | Fodder | - | - | L | P | - | - | DoLR,UG, DV | 4.00 | - | 0.24 | Oct., 2011 |
|  |  | Horticulture | R | - | L | P | C | - | DoLR, UG, DH | 25.00 | 3900 | 1.50 | July, 2012 |
|  |  | Pasture dev. | R | - | L | - | C |  | DoLR,SHG, DV | 1.00 | - | 0.06 | Dec., 2011 |
|  |  | Nursery raising | - | - | L | - | C | - | DoLR, SHG, DH | 0.50 | - | 0.03 | August, 2010 |

Table no. 52: Technical Details of Afforestation and Agro forestry Activities in 1ha

| Particulars | Value |  |  |
| :--- | :--- | :---: | :---: |
| Crop Name | Prosopis juliflora Acacia nilatica, Prosopis cineraria |  |  |
| Plant To Plant Spacing |  | 8.00 |  |
| Row to Row Spacing |  | 8.00 |  |
| Pit Length |  | 1.00 |  |
| Pit Width |  | 1.00 |  |
| Pit Depth |  | 1.00 |  |
| No. of Plants |  | 156 |  |
| Plantation Area |  | 1.00 |  |
| No. of Plants per ha |  | 1,56 |  |
| Gap Filling |  | 20 |  |

Table no. 53: Cost Estimation for afforestation and Agro forestry activity in 1ha

| S. <br> No. | Description | No. | Length (m.) | Width (m.) | Depth (m.) | Unit | Quantity | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Digging of pits for plants | 156 | 1 | 1 | 1 | Cum | 156.00 | 10 | 1560.00 |
| 2 | Plants samplings for plantation in Govt. pasture area, sampling not less than 30 cm . height | 156 |  |  |  | Nos. | 156.00 | 10 | 1560.00 |
| 3 | Transportation of plants from nursery to camp site up to 15 Km | 156 |  |  |  | Nos. | 156.00 | 2 | 312.00 |
| 4 | Loading and unloading of plants | 156 |  |  |  | Nos. | 156.00 | 2 | 312.00 |
| 5 | Rehandling of plants from camp site to actual planting site upto 200m. | 156 |  |  |  | Nos. | 156.00 | 2 | 312.00 |
| 6 | Cost of fertiliser \& insecticides incl. application | 156 |  |  |  | Nos. | 156.00 | 10 | 1560.00 |
| 7 | Weeding and Hoeing two times (Twice in year) | 156 |  |  |  | Nos. | 156.00 | 2.46 | 384.00 |
| Total |  |  |  |  |  |  |  |  | 6000.00 |

Table no. 54: Technical Details of Horticultural Activities in 1ha

| Particulars | Value |  |
| :--- | :---: | :---: |
| Crop Name | Aonla, bael Ber, Guava etc |  |
| Plant To Plant Spacing |  | 8.00 |
| Row to Row Spacing | 8.00 |  |
| Pit Length | 1.00 |  |
| Pit Width | 1.00 |  |
| Pit Depth | 1.00 |  |
| No. of Plants | M |  |
| Plantation Area | M |  |
| No. of Plants per ha | M |  |
| Gap Filling |  | 156 |

Table no. 55 : Cost Estimation for Horticultural Activities in 1ha

| $\begin{array}{\|c\|} \hline \text { S. } \\ \text { No } \end{array}$ | Description | No. | Length (m.) | Width (m.) | Depth (m.) | Unit | Quantity | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Digging of pits for plants | 156 | 1 | 1 | 1 | Cum | 1,56.00 | 10 | 1560.00 |
| 2 | Plants samplings for plantation in Govt. pasture area, sampling not less than 30 cm . height | 156 |  |  |  | Nos. | 1,56.00 | 10 | 1560.00 |
| 3 | Transportation of plants from nursery to camp site up to 15Km | 156 |  |  |  | Nos. | 1,56.00 | 2 | 312.00 |
| 4 | Loading and unloading of plants | 156 |  |  |  | Nos. | 1,56.00 | 2 | 312.00 |
| 5 | Rehandling of plants from camp site to actual planting site upto 200m. | 156 |  |  |  | Nos. | 1,56.00 | 2 | 312.00 |
| 6 | Cost of fertiliser \& insecticides incl. application | 156 |  |  |  | Nos. | 1,56.00 | 10 | 1560.00 |
| 7 | Weeding and Hoeing two times (Twice in year) | 156 |  |  |  | Nos. | 1,56.00 | 2.46 | 384.00 |
| Total |  |  |  |  |  |  |  |  | 6000.00 |

## PROPOSED EXTENSION STRATEGIES

The following feasible extension strategies have been proposed based on the analysis of data collected through PRA \& related issues/problems in IWMP 8 Farrukhabad district.

## Strategies:

A. Improvement of productivity and income of farmers in the existing enterprises and farming system.
B. Diversification and intensification of existing farming system.
C. $\quad$ Sustainability in productivity/income.
D. Integrated nutrient management.
E. Integrated pest management.
F. Seed multiplication and replacement.
G. Horticulture planting material
H. Success story.
I. Natural resources management.
J. Issue for Policy consideration
K. Farm mechanization.
L. Marketing \& Media strategies.
M. Human Resource Development.
N. Farmers Organization.
O. Public Private Partnership.
A. Improvement of Productivity and income fo farmers in the existing enterprises and farming system

## Table no. 56: Agriculture Production

| Crop | Critical Gap | Strategic issue | Strategies |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 |
| 1. Wheat2. Paddy | Yield stagnation | Use of recommended seed rate, Weed management, PopularizingSeed production programme, Popularizing Organic farming | Demonstration, Exposure visits,Training |
|  | Use of untreated seeds | Encouraging sowing with treated seeds | Demonstration, Exposure visits,Training |
|  | Un judicious use of Irrigation water | Irrigation management | Demonstration, Exposure visits,Training |
|  | Imbalance use of Fertilizer | To promote INM | Demonstration, Soil testing, Exposure visits, - Training |
|  | Un Availability of Quality Seed | In crease seed replacement ratio Promote seed production Programme | Demonstration, Exposure visits,Training |
|  | 1. Improper nursery raising | -Raised seed beds | Demonstration, Exposure visits,Training |
|  | 2. Inadequate Pest and disease management | Popularization of Integrated pest and disease management | - Demonstration <br> - Exposure visits <br> - Training |
|  | 3. Weed management | Populazation of chemical Pesticide | Demonstration, Exposure visits,Training |


| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 3..Maize | 1. Non adoption of seed treatment | Application of seed treatment | Demonstration, Exposure visits,Training |
|  | 2. Excess application of fertilizes | Use of recommended dose of fertilizer | Demonstration, Exposure visits,Training |
|  | 3. Use of Micro nutrients | -Use of recommended quantity of micro nutrients | Demonstration, Exposure visits,Training |
|  | 4. Non adoption of hand pollination practices | Following hand pollination | Demonstration, Exposure visits,Training |
| 4. Mustard | 1. Higher plant population | Popularization of plant population technique per | Demonstration, Exposure visits,Training |
|  | 2. Low production | -Suitable agronomical practices will be popularized | Demonstration, Exposure visits,Training |
|  | 3. Imbalance use of fertilizer | -Use of balanced fertilizer promote, sulpher | Demonstration, Exposure visits,Training |
|  | 4. Pest \& disease management | -Adoption of proper pest and disease management practice | Demonstration, Exposure visits,Training |
|  | 5. Post harvest technology | Popularization of improved storage method | Demonstration, Exposure visits,Training |
| 5. Lentil | 1. Yield stagnation | Timely sown, line sown, seed rate as per recommendation | Demonstration, Exposure visits,Training |
|  | 2. Imbalance use of fertilizers | Popularization of phasphetik fertilizer | Demonstration, Exposure visits,Training |
|  | 3. Low quantity of F.Y.M. | Use of recommended practice of F.Y.M. | Demonstration, Exposure visits,Training |
|  | 4. Inadequate use of sowing techniques | Use of Recommended techniques | Demonstration, Exposure visits, Training |
| 6. Sugarcane | 1. Late sowing | -Timely sowing | Demonstration, Exposure visits, Training |
|  | 2. Non application of fertilizers | Application of seed treatment | Demonstration, Exposure visits, Training |
|  | 3. Excess application of fertilizers | Use of recommended dose of fertilizer, Popularization of recommended dose of F.Y.M./Green Manure | Demonstration, Exposure visits, Training |
|  | 4. Use of Micro Nutrients | -Use of recommended quantity of micro nutrients | Demonstration, Exposure visits, Training |
|  | 5. Inadequate pest and disease management | - Adoption of IPM/IDM | Demonstration, Exposure visits, Training |
|  | 6. Injudicious use of water | -Irrigation management | Demonstration, Exposure visits, Training |
| Table no. 57: Horticultural Production:- |  |  |  |
| (1) Potato | I. Un Identified verities | Popularization of Identified Recommended verities | Demonstration, Exposure visits, Training |
|  | 2. No seed treatment | Adoption of recommended seed treatment | Demonstration, Exposure visits, Training |
|  | 3. Non use of Micro nutrients | -Application of recommended Micro nutrients | Demonstration, Exposure visits, Training |
|  | 4. Non Adoption of pest and disease management | -IDM | Demonstration, Exposure visits, Training |
| (2) Tomato | 1. No seed treatment | Adoption of recommended seed treatment | Demonstration, Exposure visits, Training |
|  | 2. Imbalace use of fertilizers | Application of recommended dose of fertilizers | Demonstration, Exposure visits, Training |
|  | 3. Low quantity use of F.Y.M. | Adoption of recommended doseOf F.Y.M. | Demonstration, Exposure visits, Training |
|  | 4. Inadequate plant protection measure | Popularization of recommended plant protection techniques | Demonstration, Exposure visits, Training |
| (3) Banana | 1. Low quantity use of F.Y.M. | Use of Recommended dose of F.Y.M | Demonstration, Exposure visits, Training |
|  | 2. No seed treatment | Popularization of bio agents, Tricoderma and Pseudomonas For seed treatments | Demonstration, Exposure visits, Training |
|  | 3. Inadequate plant protection technique | Popularization of plan protectiontechnique | Demonstration, Exposure visits, Training |

Table no. 58: ANIMAL HUSBANDRY

| Animal | Critical gap | Strategy | Activities |
| :---: | :---: | :---: | :---: |
| Cow \& Bufallow | a) Artificial Insemination partial adoption of AI | a) Improving knowledge about advantage and disadvantages of AI | a) Awareness campaign <br> b) Ensure the availability of technical staff. <br> c) Ensure the availability of semen <br> f) Conducting fertility improvement camps. <br> g) Conducting camps for castration of scrub bulls at village level <br> h) Providing wide month cry can \& 1 Lit. Thermos for easy transportation of semen to remote villages |
|  | b) Unavailable of quality fodder feed. | Improving the knowledge about animal production capacity and its fodder requirement | a) Organizing awareness camp about animal production capacity, its requirements and dairy economics. <br> b) ensure the supply of good quality fodder seeds. <br> c) Demonstration of conservation of fodder by silage making |
|  | c) Minerals \& vitamins. <br> Full gap in adoption of feeding | Motivating farmers about importance of minerals \& vitamins. | a) Intensify the awareness programmers about importance of feeding minerals \& vitamins by promoting stall feeding |
|  | d) Inter-calving period is long period | Awarding about "a calf a year" | a) Awareness camp for reduction calving period |
|  | e) Health care gap in health care management | Providing knowledge about animal health and hygiene | a) organizing awareness programme about animal health \& hygiene through trainings and field visits. <br> b) Awareness campaign about animal health camps |
|  | f) General management Partial gap in Adoption of general. Management | Technology dissemination about animal management and its importance | a organizing awareness programme about animal management through training and field visits. |
|  | g) Average milk yield. Full gap in average milk yield. | Technology dissemination about complete dairy management | By providing awareness about complete dairy management |
| Goat, Goat \& Pig, Poultry | a) Breed up gradation | Awareness about feed and fodder management | a) Providing awareness programme through training and field visits. <br> b) Refresher training course to technical |
|  | b) Feed management <br> Partial adoption of feed management | Awareness about feed and fodder management | a) Providing awareness programme about the feed and fodder requirement of the animal. <br> b) Intesify the supply of fodder seeds |
|  | d) Health care <br> -gap in health care management -non adoption of deworming schedule | -Popularizing the importance of deworming. <br> - Providing knowledge about animal health and hygiene | a) awareness camp about importance of deworming <br> b) Conducting deworming comps <br> c) Organizing awareness programme about animal health and hygiene through training and field visit. |
|  | d) General Management <br> - Partial gap in adoption of general management | - Technology dissemination about animal management and its importance | - Organizing awareness programme about animal management through training and field visit |

## IWMP Farrukhabad III (UP):DoLR

Table no. 59: Fish Production

| 1. Fish <br> production | 1 Poor ground water <br> resource during summer | Water storage facilities from on going schemes | Linkage with credit institution |
| :--- | :--- | :--- | :--- |
|  | 2. Silt \& weed problem in existing ponds | Desalting of ponds \& eradication of weed | Demonstration, Exposure visits, Training |
|  | 3. Improper stocking measures | Promotion of proper stocking measures | Demonstration, Exposure visits, Training |
|  | 4. Unawareness about composite fish farming | Creating awareness about composite fish farming | Demonstration, Exposure visits, Training |
|  | 5. Improper artificial feeding | Promotion of proper artificial feeding | Demonstration, Exposure visits, Training |
|  | 6. Marketing of fish through unorganized <br> sectors | To promote marketing of fish through organized <br> sectors | Demonstration, Exposure visits, Training |
|  | 7. Unawareness about cold storage and <br> processing of fish | To create awareness about storing fish in cold <br> storage and process the fish | Demonstration, Exposure visits, Training |

Table no. 60: Details of allied/ other activities (Total of the production system and micro enterprises intervention)

| S.no | Names of the villages | Name of activity | Type of land |  |  | Executing agency | Total target |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (i) Private | (ii) Community | (iii) Others (pl. specify) | (i)UG <br> (ii) SHG | Estimated cost (Rs. In lakh) | Expected month \& year of completion |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

A. PRODUCTION SYSTEM AND MICRENTERPRIZES INERVENTION (50 \% BUDGET OF EACH INTERVENTION USE AS REVOLVING FUND AND 50 \% USE AS TRAINING \& TRAINING MATERIOALS)

| 1 | 2B3D3c1e | Milk Collection Centre | - | Community | - | SHG | 0.50 | March, 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bee Keeping | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Small ruminants (Goatry) | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Fisheries | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Portable hatchery | - | - | - | SHG | 1.00 | March, 2015 |
|  |  | Nursery raising | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Rural craft |  | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutient | Private | - | - | UG | 0.82 | March, 2015 |
|  | Total |  |  |  |  |  | 6.82 |  |
| 2 | 2B3D3c2a | Bee Keeping | - | Community | - | SHG | 5.00 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 3.00 | March, 2015 |
|  |  | Fisheries | - | Community | - | SHG | 3.00 | March, 2015 |
|  |  | Nursery raising | - | Community | - | SHG | 4.00 | March, 2015 |
|  |  | Medicinal Plant | Private | - | - | SHG | 4.00 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 4.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 1.33 | March, 2015 |
|  | Total |  |  |  |  |  | 24.33 |  |
| 3 | 2B3D3c2b | Milk Collection Centre | - | Community | - | SHG | 2.00 | March, 2015 |
|  |  | Bee Keeping | - | Community | - | SHG | 2.00 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 2.00 | March, 2015 |
|  |  | Small ruminants (Goatry) | - | Community | - | SHG | 2.00 | March, 2015 |
|  |  | Fisheries | - | Community | - | SHG | 2.00 | March, 2015 |
|  |  | Portable hatchery | - | - | - | SHG | 2.00 | March, 2015 |
|  |  | Nursery raising | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Rural craft |  | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutient | Private | - | - | UG | 0.52 | March, 2015 |
|  | Total |  |  |  |  |  | 14.52 |  |



Table no. 61: Item wise total for the project

| S.no | Names of the villages | Name of activity | Type of land |  |  | Executing agency | Total target |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (i) Private | (ii) Community | (iii) Others (pl. specify) | (i)UG <br> (ii) SHG <br> (iii) Others (pl. specify) | Estimated cost (Rs. In lakh) | Expected month \& year of completion (mm/yyyy) |
| 1 | 36 villages in IWMP III ${ }^{\text {rd }}$ | Milk Collection Centre | - | Community | - | SHG | 7.00 | March, 2015 |
|  |  | Bee Keeping | - | Community | - | SHG | 14.00 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 10.00 | March, 2015 |
|  |  | Small ruminants (Goatry) | - | Community | - | SHG | 7.00 | March, 2015 |
|  |  | Fisheries | - | Community | - | SHG | 8.00 | March, 2015 |
|  |  | Portable hatchery | - | Community | - | SHG | 7.00 | March, 2015 |
|  |  | Nursery raising | - | Community | - | SHG | 10.50 | March, 2015 |
|  |  | Medicinal Plant | Private | - | - | SHG | 5.00 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 10.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 4.94 | March, 2015 |
|  | Total |  |  |  |  |  | 83.44 |  |

Table no 62: Activities related production system and micro enterprizes intervention by Self Help Groups (SHGs) in the Project areas

| S.no | Names of the Villages | Major activities of the SHGs |  |  |  | No. of SHGs require training | Total assistance planned for the SHG (Amount in Rs.) |  |  |  | Total annual Income to be generated (Rs.) | Total annual Savings to be done (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Name of activity | No. of SHGs involved | Average annual income from activity per SHG | Expected month \& year of completion (mm/yyyy) |  | Loan from revolving | Training | Material |  |  |  |
| 1 | 36 villages in IWMP III ${ }^{\text {rd }}$ | Milk Collection Centre | 7 | 100000.00 | March, 2015 | 7 | 350000.00 | 210000.00 | 140000.00 | - | 700000.00 | 600000.00 |
|  |  | Bee Keeping | 13 | 70000.00 | March, 2015 | 13 | 650000.00 | 390000.00 | 210000.00 | - | 910000.00 | 900000.00 |
|  |  | Fruit preservation | 10 | 75000.00 | March, 2015 | 10 | 500000.00 | 300000.00 | 200000.00 | - | 750000.00 | 700000.00 |
|  |  | Small ruminants (Goatry) | 7 | 70000.00 | March,2015 | 7 | 350000.00 | 210000.00 | 140000.00 | - | 490000.00 | 600000.00 |
|  |  | Fisheries | 8 | 100000.00 | March, 2015 | 8 | 400000.00 | 240000.00 | 160000.00 | - | 800000.00 | 700000.00 |
|  |  | Portable hatchery | 7 | 150000.00 | March,2015 | 7 | 350000.00 | 210000.00 | 190000.00 | - | 1050000.00 | 800000.00 |
|  |  | Nursery raising | 10 | 40000.00 | March, 2015 | 10 | 500000.00 | 300000.00 | 250000.00 | - | 400000.00 | 500000.00 |
|  |  | Medicinal Plant | 5 | 50000.00 | March, 2015 | 5 | 250000.00 | 150000.00 | 100000.00 | - | 250000.00 | 200000.00 |
|  |  | Rural craft | 10 | 50000.00 | March,2015 | 10 | 500000.00 | 300000.00 | 200000.00 | - | 500000.00 | 600000.00 |

### 5.2.5 LIVELIHOOD ACTIVITIES

Income generating activities through self help groups for landless farmers like goat farming, poultry farming bee keeping, livestock development activities, vocational training given with the involvement of KVK, Farrukhabad and NGOs. Financial out lays for this component is 10 \% i.e., Rs 64.16 lacs, details are given below in table.

## Table no. 63: Details of allied/ other activities (Total of livelihood intervention)

| S.no | Names of the villages | Name of activity | Type of land |  |  | Executing | Total target |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (i) Private | (ii) Community | (iii) Others (pl. specify) | (i)UG <br> (ii) SHG | Estimated cost (Rs. In lakh) | Expected month \& year of completion (mm/yyyy) |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

A. PRODUCTION SYSTEM AND MICRENTERPRIZES INERVENTION (50 \% BUDGET OF EACH INTERVENTION (EXCEPT CROP DEMONSTRATION, MEDICINAL PLANT, HORTICULTURE) USE AS REVOLVING FUND AND $50 \%$ USE AS TRAINING \& TRAINING MATERIOALS)

| 1 | 2B3D3c1e | Crop demonstration | Private | - | - | UG | 0.50 | March, 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Medicinal plant | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 1.00 | March, 2015 |
|  |  | Nursery raising | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Goatery |  | Community |  | SHG | 0.50 | March, 2015 |
|  |  | Piggery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 0.24 | March, 2015 |
|  | Total |  |  |  |  |  | 5.24 |  |
| 2 | 2B3D3c2a | Crop demonstration | Private | - | - | UG | 4.00 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 5.00 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 3.00 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 3.00 | March, 2015 |
|  |  | Piggery |  | Community | - | SHG | 3.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 0.72 | March, 2015 |
|  | Total |  |  |  |  |  | 18.72 |  |
| 3 | 2B3D3c2b | Crop demonstration | Private | - | - | UG | 2.00 | March, 2015 |
|  |  | Medicinal plant | Private | - | - | UG | 2.00 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 1.00 | March, 2015 |
|  |  | Nursery raising | Private | - | - | UG | 1.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Goatery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Piggery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 0.66 | March, 2015 |
|  | Total |  |  |  |  |  | 11.16 |  |


| 4 | 2B3D3b1 | Crop demonstration | Private | - | - | UG | 1.00 | March, 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Horticulture | Private |  | - | UG | 1.00 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Piggery |  | Community | - | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 1.36 | March, 2015 |
|  | Total |  |  |  |  |  | 6.36 |  |
| 5 | 2B3D3b1a | Crop demonstration | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Medicinal plant | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 0.50 | March, 2015 |
|  |  | Nursery raising | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Goatery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Piggery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 0.40 | March, 2015 |
|  | Total |  |  |  |  |  | 5.40 |  |
| 6 | 2B3D3c1c | Crop demonstration | Private | - | - | UG | 0.00 | March, 2015 |
|  |  | Medicinal plant | Private | - | - | UG | 0.00 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 0.50 | March, 2015 |
|  |  | Nursery raising | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Goatery |  | Community |  | SHG | 0.50 | March, 2015 |
|  |  | Piggery |  | Community |  | SHG | 0.50 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 0.72 | March, 2015 |
|  | Total |  |  |  |  |  | 3.72 |  |
| 7 | 2B3D3b1c | Crop demonstration | Private | - | - | UG | 1.00 | March, 2015 |
|  |  | Medicinal plant | Private | - | - | UG | 1.00 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 0.50 | March, 2015 |
|  |  | Nursery raising | Private | - | - | UG | 0.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 0.50 | March, 2015 |
|  |  | Goatery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Piggery |  | Community |  | SHG | 1.00 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 0.36 | March, 2015 |
|  | Total |  |  |  |  |  | 6.36 |  |
| 8 | 2B3D3c1d | Crop demonstration | Private | - | - | UG | 1.00 | March, 2015 |


|  | Medicinal plant | Private | - | - | UG | 1.00 | March, 2015 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Horticulture | Private |  | - | UG | 1.00 | March, 2015 |
|  | Fruit preservation | - | Community | - | SHG | 1.00 | March, 2015 |
|  | Rural craft | - | Community | - | SHG | 1.00 | March, 2015 |
|  | Goatery |  | Community |  | SHG | 1.00 | March, 2015 |
|  | Piggery |  | Community |  | SHG | 1.00 | March, 2015 |
|  | Animal Nutrient | Private | - | - | UG | 0.20 | March, 2015 |
| Total |  |  |  |  |  | 7.20 |  |
| G. Total (for 36 village) |  |  |  |  |  | 64.16 |  |

Table no. 64: Item wise total for the project

| S.no | Names of the villages | Name of activity | Type of land |  |  | Executing agency | Total target |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (i) Private | (ii) Community | (iii) Others (pl. specify) | (i)UG <br> (ii) SHG <br> (iii) Others | Estimated cost (Rs. In lakh) | Expected month \& year of completion (mm/yyyy) |
| 8 | 36 villages in IWMP III $^{\text {rd }}$ | Crop demonstration | Private | - | - | UG | 10.00 | March, 2015 |
|  |  | Medicinal plant | Private | - | - | UG | 5.00 | March, 2015 |
|  |  | Horticulture | Private |  | - | UG | 10.50 | March, 2015 |
|  |  | Nursery raising | Private | - | - | UG | 3.50 | March, 2015 |
|  |  | Fruit preservation | - | Community | - | SHG | 8.00 | March, 2015 |
|  |  | Rural craft | - | Community | - | SHG | 8.00 | March, 2015 |
|  |  | Goatery |  | Community |  | SHG | 5.00 | March, 2015 |
|  |  | Piggery |  | Community |  | SHG | 9.50 | March, 2015 |
|  |  | Animal Nutrient | Private | - | - | UG | 4.66 | March, 2015 |
|  | Total |  |  |  |  |  | 64.16 |  |

Table no. 65: Activities related to livelihoods by Self Help Groups (SHGs) in the Project areas

| S.no | Names of the Villages | Major activities of the SHGs |  |  |  | No. of SHGs require training | Total assistance planned for the SHG (Amount in Rs.) |  |  |  | Total annual Income to be generated (Rs.) | TotalannualSavings to <br> be done(Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Name of activity | $\begin{gathered} \hline \text { No. of } \\ \text { SHGs } \\ \text { involved } \end{gathered}$ | Average annual income from activity per SHG | Expected month \& year of completion (mm/yyyy) |  | Loan from revolving | Training | Material | Others (pl. specify) |  |  |
| 1 | 33 villages in IWMP II ${ }^{\text {nd }}$ | Fruit preservation | 8 | 75000.00 | March, 2015 | 8 | 400000.00 | 240000.00 | 160000.00 | - | 600000.00 | 600000.00 |
|  |  | Rural craft | 7 | 50000.00 | March,2015 | 7 | 350000.00 | 210000.00 | 140000.00 | - | 350000.00 | 500000.00 |
|  |  | Goatery | 5 | 70000.00 | March, 2015 | 5 | 250000.00 | 150000.00 | 100000.00 | - | 350000.00 | 600000.00 |
|  |  | Piggery | 9 | 100000.00 | March,2015 | 9 | 450000.00 | 270000.00 | 230000.00 | - | 900000.00 | 800000.00 |

Table no 66 : (A) Details of livelihoods created for landless people*- including micro enterprises

| S.no | Names of the villages | Name of activity | No. of beneficiaries |  |  |  |  | Preproject income (Rs.) | Expected change in income from project intervention | Funds require d for the activity (Rs.) | Sources of funding(Rs.) |  |  |  |  | Expected month \& year of completion (mm/yyyy) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SF | MF | LF | Land less | Total |  |  |  | Project <br> Fund | Beneficia ry | Financial institution | $\begin{aligned} & \mathrm{NG} \\ & \mathrm{O} \end{aligned}$ | Other s |  |
| 1 | 36 villages in IWMP III $^{\text {rd }}$ | Fruit preservation | 10 | 2 |  | 108 | 120 | 12000.00 | 600000.00 | 800000 | 800000 | - | - | - | - | March, 2015 |
|  |  | Rural craft | 22 | 5 | - | 168 | 195 | 20000.00 | 650000.00 | 1300000 | 1300000 | - | - | - | - | March, 2015 |
|  |  | Goatery | 31 | 14 | - | 60 | 105 | 12000.00 | 490000.00 | 700000 | 700000 | - | - | - | - | March, 2015 |
|  |  | Piggery | - | - | - | 180 | 180 | 60000.00 | 1200000.00 | 1200000 | 1200000 | - | - | - | - | March, 2015 |

Table no. 67: (B) Details of other livelihoods created for farmers

| S.no | Names of the villages | Name of activity | No. of beneficiaries |  |  |  |  | Preproject income (Rs.) | Expected change in income from project intervention | Funds require d for the activity (Rs.) | Sources of funding(Rs.) |  |  |  |  | Expected <br>  <br> year of completion (mm/yyyy) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SF | MF | LF | Other | $\begin{gathered} \text { Tot } \\ \text { al } \end{gathered}$ |  |  |  | Project <br> Fund | Beneficia ry | Financial institution | $\begin{aligned} & \text { NG } \\ & \mathrm{O} \end{aligned}$ | Other s |  |
| 1 | 36villagesinIWMPIII ${ }^{\text {rd }}$ | Crop <br> demonstration | 250 | 525 | 125 | - | 900 | 900000.00 | 1200000.00 | 1800000 | 1800000 | - | - | - | - | March, 2015 |
|  |  | Medicinal plant | 15 | 30 | 15 | - | 60 | - | 3000000.00 | 600000 | 600000 | - | - | - | - | March, 2015 |
|  |  | Horticulture | 10 | 50 | 25 | - | 85 | 50000.00 | 8500000.00 | 850000 | 850000 | - | - | - | - | March, 2015 |
|  |  | Nursery raising | 4 | 2 | 3 | - | 9 | - | 900000.00 | 450000 | 450000 | - | - | - | - | March, 2015 |

### 5.2.6 Marketing linkage

The direct livelihood activities need good forward and backward support. Without such support system the activities may fail to deliver the desired results. These linkages would involve credit, machinery, input supply, marketing, etc.

Table no. 68: Backward and Forward Linkage

| S. No. | Project | Type of Marketing Facility | Pre-project (no.) | During the project (no.) | Post-project (no.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | IWMP III $^{\text {rd }}$ | Backward linkages |  |  |  |
|  |  | Seed certification | 1 | 1 | 1 |
|  |  | Seed supply system | 3 | 3 | 8 |
|  |  | Fertilizer supply system | 2 | 1 | 2 |
|  |  | Pesticide supply system | 6 | 6 | 10 |
|  |  | Credit institutions | Bank-5 | Bank-7 | Bank-10 |
|  |  | Water supply | - | - | - |
|  |  | Extension services | 3 | 3 | 12 |
|  |  | Nurseries | 1 | 1 | 12 |
|  |  | Tools/machinery suppliers | - | - | 2 |
|  |  | Price Support system | - | - | 4 |
|  |  | Labour | - | - | - |
|  |  | Any other (please specify) | - | - | - |
|  |  | Forward linkages |  |  |  |
|  |  | Harvesting/threshing machinery | 4 | 8 | 12 |
|  |  | Storage (including cold storage) | 1 | 1 | 4 |
|  |  | Road network |  |  |  |
|  |  | Transport facilities | - | - | - |
|  |  | Markets / Mandis | 8 | 9 | 12 |
|  |  | Agro and other Industries | 1 | 5 | 6 |
|  |  | Milk and other collection centres | - | 2 | 6 |
|  |  | Labour | - | - | - |
|  |  | Hatchery (Portable) | - | 5 | 8 |
|  |  | Vermi-compost unit | - | 2 | 5 |
|  |  | Animal Mineral Mixture | - | - | $50 \mathrm{gm} /$ day/animal |

### 5.3 Convergence Planning for various activities

5.3.1 Earthen bund, contour bund, percolation tank, injection well will be made in watershed area convergence with MNREGS
5.3.2 Soil health card, crop demonstration, kisan gosthi, kisan mela, farmer's school also organized in watershed area under many scheme of department of Agriculture.
5.3.3 Composite fish farming or mixed fish farming popularized in this area with Department of fisheries.
5.3.4 Animal health camp, fodder development, vaccination work also made through Veterinary Department.
5.3.5 Aforestation in project area also done with Forest Department.
5.3.6 Dry land horticulture also convergence with department of horticulture.

Table no. 69: Details of Convergence of other Schemes in the Project area with IWMP Project

| S.No. | Name of the MW | Names of Departments with Schemes converging with IWMP* | Fund made available to IWMP project due to convergence (Rs. In lakh) | Was this fund included in Rs. 12,000/15,000 Per ha |  | Name of activity/task/structure undertaken with converged funds | Reference no. of activity/task/structure in DPR | Level at which decision for convergence was taken \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Yes | No | (a) Structures <br> (b) Livelihoods <br> (c) Production System |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2B3D3c1e | MNREGS | 4.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.40 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.10 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.20 |  | No | b, c | 5 | PIA |
|  |  | F | 0.30 |  | No | b, c | 5 | PIA |
|  |  | Total | 5.00 |  | No |  |  |  |
| 2 | 2B3D3c2a | MNREGS | 15.00 |  | No | a | 5 | DRDA |
|  |  | DA | 1.50 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.30 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.40 |  | No | b, c | 5 | PIA |
|  |  | F | 0.30 |  | No | b, c | 5 | PIA |
|  |  | Total | 17.50 |  | No |  |  |  |
| 3 | 2B3D3c2b | MNREGS | 17.00 |  | No | a | 5 | DRDA |
|  |  | DA | 1.70 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.50 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.50 |  | No | b, c | 5 | PIA |
|  |  | F | 0.30 |  | No | b, c | 5 | PIA |
|  |  | Total | 19.00 |  | No |  |  |  |
| 4 | 2B3D3b1 | MNREGS | 14.00 |  | No | a | 5 | DRDA |
|  |  | DA | 1.40 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.30 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.40 |  | No | b, c | 5 | PIA |
|  |  | F | 0.45 |  | No | b, c | 5 | PIA |
|  |  | Total | 16.55 |  | No |  |  |  |
| 5 | 2B3D3b1a | MNREGS | 5.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.50 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.20 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.20 |  | No | b, c | 5 | PIA |
|  |  | F | 0.20 |  | No | b, c | 5 | PIA |
|  |  | Total | 6.10 |  | No |  |  |  |
| 6 | 2B3D3c1c | MNREGS | 8.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.60 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.30 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.30 |  | No | b, c | 5 | PIA |
|  |  | F | 0.25 |  | No | b, c | 5 | PIA |
|  |  | Total | 9.45 |  | No |  |  |  |
| 7 | 2B3D3b1c | MNREGS | 11.00 |  | No | a | 5 | DRDA |
|  |  | DA | 0.90 |  | No | b, c | 5 | PIA |
|  |  | DHO | 0.40 |  | No | b, c | 5 | PIA |
|  |  | DF | 0.45 |  | No | b, c | 5 | PIA |


|  |  | F | 0.60 | No | b, c | 5 | PIA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | 13.35 | No |  |  |  |
| 8 | 2B3D3c1d | MNREGS | 20.50 | No | a | 5 | DRDA |
|  |  | DA | 1.60 | No | b, c | 5 | PIA |
|  |  | DHO | 0.50 | No | b, c | 5 | PIA |
|  |  | DF | 0.50 | No | b, c | 5 | PIA |
|  |  | F | 0.60 | No | b, c | 5 | PIA |
|  |  | Total | 22.70 | No |  |  |  |
|  |  | Grand Total | 109.65 |  |  |  |  |

only letter (a) or (b) or (c) needs to be filled. In case more than one activity has been undertaken all the concerned letters may be indicated e.g. (a) + (b)

* DA= Department of Agriculture, DHO= Department of Horticulture, VO= Department of Veterinary, DF= Department of Fisheries, F= Forest


## 6. CAPACITY BUILDING PLAN

Capacity Building is the process of assisting the group or individuals to identify and address issues and gain the insights, knowledge and experience needed to solve problems and implement change.

There is a realization in the development sector that there is a need to appraise the success of development interventions by going beyond the conventional development targets and measures of success (e.g. in the form of commodities, goods and services) to take into account improvements to human potential. Capacity building of stakeholders is also increasingly viewed as an important factor in developmental projects that involve participation of stakeholders at all levels for effective implementation of projects.

## Scope of capacity building at IWMP III ${ }^{\text {rd }}$

- Alternative Land Use Plan
- Scientific technique of Soil and Moisture conservation
- Improved and Scientific agriculture practices
- Fodder development and Management
- Afforestation
- Meteorological Information
- Dairy Development and Management
- Rural Craft
- Income Generation Activities
- Stitching
- Food Processing
- Post Harvest management practices
- Fish Production

Capacity building and training are the most important components of watershed management programme both for the field level project staff/ officers and functionaries of people institutions i.e. watershed community. Apart from enhancing technical skill of the project staff, this would also provide opportunities to community members to develop their capacity as the feature custodians of the programmes after project's withdrawal. IWMP II $^{\text {nd }}$ Farrukhabad financial outlay for capacity buildings is 5\% (Rs. 32.86) of the total project cost, out of which Rs 1.7 will be expanded for initition of village level institution.

Table no 70 : Capacity Building activities in the project

| S.No. | Project Stakeholders | Total no. of persons | No. of persons trained so far | No. of persons of be trained during current financial year | Sources of funding for training |  | Name and Address of the Institute where Trained |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | a) DoLR | b) any other <br> (pl. specify) |  |
| 1 | PIAs | 8 | 2 | 8 | DoLR |  | KVK, GSP,GKSS |
| 2 | WDTs | 32 | 12 | 32 | DoLR |  | KVK, GSP,GKSS |
| 3 | UGs | 155 | 52 | 155 | DoLR |  | KVK, GSP,GKSS |
| 4 | SHGs | 180 | 42 | 180 | DoLR |  | KVK, GSP,GKSS |
| 5 | WCs | 17 | 5 | 17 | DoLR |  | KVK, GSP,GKSS |
| 6 | GPs | 22 | - | 22 | DoLR |  | KVK, GSP,GKSS |
| 7 | Community | 1200 | - | 1200 | DoLR |  | KVK, GSP,GKSS |
| 8 | Others (pl. specify) |  |  |  |  |  |  |

Table no 70.1: Detail of activities undertaken

| Strategy | Proposed activity | No. of Units | Unit cost | Total Cost |
| :---: | :---: | :---: | :---: | :---: |
| Capacity building Activities | Stakeholders - Scientists Interaction, | 15 | 0.10 | 1.00 |
|  | Training (2 days) | 100 | 0.05 | 5.00 |
|  | Vocational/employment Generation Training (5-10 days) | 100 | 0.10 | 10.00 |
|  | In-service Training. (3 days) | 20 | 0.10 | 2.00 |
|  | Exposure visit within State | 5 | 0.20 | 1.00 |
|  | Exposure visit out of State | 6 | 0.50 | 3.00 |
|  | Field days | 25 | 0.20 | 5.00 |
|  | Workshop | 5 | 0.60 | 3.00 |
|  | Total |  |  | 30.00 |

Table no 70.2 : Information, Education \& Communication (IEC) activities in the project area

| S.no. | Activity | Executing agency | Estimated expenditure (Rs.) | Expected Outcome (may <br> quantify wherever possible) |
| :--- | :--- | :--- | :---: | :---: |
| 1 | Street plays | Local Drama Groups | 100000.00 | Awareness about importance |
| of watershed project |  |  |  |  |
| 2 | Video Shows | IWMP, Farrukhabad | 100000.00 |  |
| 3 | Pamphlets and Poster | IWMP, Farrukhabad | 100000.00 |  |
| 4 | Banners and Hoardings | IWMP, Farrukhabad | 100000.00 |  |
|  |  | Total | $\mathbf{4 0 0 0 0 0 . 0 0}$ |  |

## 7. PHASING OF PROGRAMMES AND BUDGETING

7.1 FUNDING OF THE PROJECT

| S.No. |  | IWMP fund |  | Funds from other sources in addition to IWMP funds |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Central share | State share | Convergence funds |  | PPP |  | Community |  | Institutional finance |  | Others (pl. specify) |  |  |
|  |  |  |  | Name of Scheme | Amount | Name of Private sector | Financial contribution | Name | Financial contribution | Name | Financial contribution | Name | Financial contribution |  |
| 1 | $\begin{gathered} \text { IWMP } \\ \text { III }^{\text {rd }} \end{gathered}$ | 714.00 | - | * | 124.10 | - | - | - | - | - | - | - | - | 838.10 |

*For detail please see table no. 69 it is additional budget and not included in fund budget (Rs. 12000.00). this budget will be use in watershed area according requirement and need during work phase by PIA.

### 7.2 YEAR WISE PHASING OF WORK (Physical and Financial)

Phasing of various works/ activities during different year of the project for treatable area 5950.00 ha out of proposed area 7274.00 ha presented in table

Table no. 73: COMPONENT WISE AND YEAR WISE PHASING OF PHYSICAL AND FINANCIAL OUTLAY(All financial figures in lakh Rs.)

| S.N. | Particulars | $\begin{gathered} 6 \text { Year } \\ (2010-11) \end{gathered}$ |  | $\begin{gathered} \text { 6Year } \\ (2011-12) \end{gathered}$ |  | $\begin{gathered} 3^{\text {rd }} \text { Year } \\ (2012-13) \end{gathered}$ |  | $\begin{gathered} 4^{\text {th }} \text { Year } \\ (2013-14) \end{gathered}$ |  | $\begin{gathered} 5^{\text {th }} \text { Year } \\ (2014-15) \end{gathered}$ |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Finncial lac | Phy. <br> Hc | Finncial lac | Phy. <br> Hc | Finncial lac | Phy. <br> Hc | Finncial lac | Phy. Hc | Finncial lac | Phy. <br> Hc | Finnci <br> al <br> lac | Phy. <br> Hc |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 1 | Administration Cost 10\% | 3.21 | To meet out the administrative works/charges | 9.62 | As per column 4 | 17.32 | As per column 4 | 17.32 | As per column 4 | 16.68 | As per column 4 | 64.16 | $\begin{aligned} & \text { As per } \\ & \text { column } \\ & 4 \end{aligned}$ |
| 2 | Monitoring 1\% | - | monitoring of the project | 1.28 | As per column 4 | 1.28 | As per column 4 | 1.28 | As per column 4 | 2.56 | As per column 4 | 6.41 | $\begin{aligned} & \text { As per } \\ & \text { column } \\ & 4 \end{aligned}$ |
| 3 | Evaluation 1\% | - | Evaluation of the project | 1.92 | As per column 4 | 1.12 | As per column 4 | 1.12 | As per column 4 | 2.24 | As per column 4 | 6.41 | $\begin{aligned} & \text { As per } \\ & \text { column } \\ & 4 \end{aligned}$ |
| 4 | Entry point Activities 4\% | 25.66 | Renovation of Culvert, well soaking pit kishan vikas manch etc. | - | As per column 4 | 25.66 | $\begin{aligned} & \text { As per } \\ & \text { column } \\ & 4 \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Institution \& Capacity Building 5\% | 3.21 | Training DPR | 16.04 | As per column 4 | 4.81 | As per column 4 | 4.81 | As per column 4 | 3.21 | As per column 4 | 32.08 | $\begin{aligned} & \text { As per } \\ & \text { column } \\ & 4 \\ & \hline \end{aligned}$ |
| 6 | DPR 1\% | 6.41 | Preparation of DPR | - | As per column 4 | 6.41 | $\begin{aligned} & \hline \text { As per } \\ & \text { column } \\ & 4 \end{aligned}$ |
| 7 | Watershed Dev. Works 50\% | - | Construction of <br> Soil and water recharging <br> structure Agro forestry horticulture etc. | 48.12 | 802.05 | 99.45 | 1657.57 | 93.040 | 1550.63 | 80.21 | 1336.75 | 320.82 | 5347.00 |
| 8 | Livelihood Activities 10\% | - | Nadef compost unit, Dairy/Goat,Pou ltry General merchant etc. | 6.42 | As per column 4 | 25.66 | $\begin{aligned} & \text { As per } \\ & \text { column } 4 \end{aligned}$ | 19.25 | As per column 4 | 12.83 | As per column 4 | 64.16 | As per column 4 |
| 9 | Productiion <br> System \& micro Enterprises 13\% | - | farming system approach animal husbandry activates, horticulture, vegetables growing, medicinal plants, Floriculture etc. | 6.68 | As per column 4 | 25.03 | As per column 4 | 31.71 | As per column 4 | 20.03 | As per column 4 | 83.44 | As per column 4 |
| 10 | Consolidation Phase | - | Consolidation activites | - | As per column 4 | - | As per column 4 | - | $\begin{aligned} & \text { As per } \\ & \text { column } 4 \end{aligned}$ | 32.08 | As per column 4 | 32.08 | $\begin{aligned} & \text { As per } \\ & \text { column } \\ & 4 \end{aligned}$ |
|  | Total | 38.49 | 0 | 90.08 | 802.05 | 174.67 | 1657.57 | 168.53 | 1550.63 | 169.84 | 1336.7 | 641.6 | 5347 |

Table no. 74: ABSTARACT OF COMPONENT WISE WORK AND FINANCIAL OUTLAY OF THE SELECTED 9 WATERSHED

| (All financial figures in lakh Rs.) |  |  |
| :---: | :---: | :---: |
| S.No. | Component | Total |
| 1 | MANAGEMENT COSTS |  |
| A | Administrative cost-TA\&DA, POL/Hiring of vehicles/office and payment of electricity and phone bill etc. computer, stationary and office consumable and Contingency | 64.16 |
| B | Monitoring | 6.41 |
| C | Evaluation | 6.41 |
|  | Sub Total | 77.00 |
| 2 | PREPARATORY PHSES | - |
| A | Entry Point Activities like improvement in drinking water system, school, temple etc | 25.6 |
| B | Capacity Building | 32.08 |
| C | DPR | 6.41 |
|  | Sub Total | 64.16 |
| 3 | WATERSHED WORKS | 320.82 |
| A | Soil and Moisture Conservation |  |
|  | Contour Bund | 64.97 |
|  | Graded Bund | 57.75 |
|  | Gully Plug | 21.66 |
| B | Water Resource Development |  |
|  | Water harvesting Bundhi, Farm ponds, check dam injection well, open well, bore well etc | 160.41 |
| C | Agro-forestry \& Horticulture | 16.04 |
|  | Agro-forestry |  |
|  | Horticulture |  |
|  | Sub Total | 320.82 |
| 4 | LIVILIHOOD PROGRAMME (Community based) | - |
|  | Income generating activities through SHG are for landless and marginal farmers. Establishment of Vermi compost units Mushroom cultivation Block plantation of Aonla Bael Ber for fire wood | 64.16 |
|  | Sub Total | 64.16 |
| 5 | PRODUCTION SYATEM AND MICRO ENTERPRISES |  |
|  | Demonstrations and Assessment <br> Seed, Biofertilizer, Pest control, Advance agril. Equipment, Production of Compost | 83.44 |
|  | Sub Total | 83.44 |
| 6 | CONSOLIDATION PHASE | 32.08 |
|  | GRAND TOTAL | 641.64 |

## 8. CONSOLIDATION/EXIT STRATEGY

### 8.1 Quality and Sustainability Issues

### 8.1.1 Plans for Monitoring and Evaluation

A Web-based GIS System is being developed for monitoring and evaluating the project in its planning \& implementation phases. The system would be available on a public domain and can be accessed by all the stakeholders of the project. The system shows the entire state of Uttarpratesh and all of those areas selected over the next 18 years. Filtering allows the user to zoom onto one particular project. Details related to soil type, Land-use classification, inhabitation etc., can be obtained village-wise. Furthermore, survey-number wise details related to ownership, irrigation source, yield etc., can also be accessed by the users of the system. This system is being used for pooling up the details obtained from the DPR. In other words, the DPR is made available online in the form of a database which will help the stakeholders know areas of importance viz., already treated areas/historical works in the area, proposed areas for treatment etc., for further treatment and planning. The system would also show the satellite imageries of various years from the project inception stage to the project closing stages. This allows the user to evaluate the effectiveness of the treatment and thereby plan corrective measures for the project area. The system would serve as an aiding tool to the planners and evaluators for judging the efficacy of the project.
Yet another component of the Web-based GIS system is the Mobile based Monitoring \& Evaluation System, which will help the ground staff alias WDTs (Watershed Development Team) to transmit information from the ground level to the central server. Also, any higher-up official in charge of the project can obtain information regarding the project area on their mobile phone by means of an SMS. The system works in the following manner. The WDT equipped with a GPS instrument marks the latitude-longitude information of various treatment areas during the DPR. The probable sites are then transferred onto the central server. During the works phase, any progress in the treatment areas is reported to the server by means of an SMS by the WDT. Similarly, any nodal officer or higher-up official can view the progress in a project by means of summarized reports generated over frequent periods of time.

### 8.1.2 Plans for Project management:

The Project management of any watershed programme is very important. It mainly depends upon the community organization and the village level institutes in IWMP III ${ }^{\text {rd }}$ Farrukhabad watershed committee and various user group have been formulated for post project operation and maintenance of assets created during project period. Major emphasis will be on equity and sustainable benefit of the project even after implementation stage. A proper link-up will be built during project period with various institutes and capacity building organization. They will act as a major kingpin during post implementation for scaling up the successful experience during project.

### 8.1.3 Watershed Development Fund:

The major source of financial assistance after post implementation period is watershed Development Fund. The contribution of it will comes mainly fund the following: Attention:

### 8.1.4 User Charges:

Various user groups will be formed in village. These user groups will collect user charges according to the designated rules formed during the formation of user group. These funds will be transferred to the WDF funds as per these formulated rules. The secretary of watershed committee (WC) shall maintain the records of the following.

### 8.2 Activities in the CPRs in the project area

Table no. 75: Details of activities in the CPRs in the Project areas

| S.no | Name (s) of the villages | CPR particulars | Activity Proposed | Target |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Target area under the activity (ha) | ```Estimated expenditure (laks.)``` | Expected no. of beneficiaries | Estimated contribution to WDF (Rs.) | Expected month \& year of completion (mm/yyyy) |
| 1 | 2B3D3c1e | Wasteland | Engineering work | 102.00 | 6.12 | 350 | 31000.00 | March, 2015 |
|  |  | Forest | Afforesttion | 22.00 | 1.32 | 88 | 7000.00 | July, 2012 |
|  |  | Pasture | Land development | 3.00 | 0.18 | 70 | 1000.00 | July, 2012 |
|  |  | Orchard | Horticulture | 10.00 | 0.60 | 180 | 3000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 2 no | 2.00 | 140 | 10000.00 | March, 2011 |
|  |  | Total |  | 137.00 | 10.22 | 828 | 52000.00 |  |
| 2 | 2B3D3c2a | Wasteland | Engineering work | 107.00 | 6.42 | 410 | 32100.00 | March, 2015 |
|  |  | Forest | Afforesttion | 45.00 | 2.70 | 188 | 13500.00 | July, 2012 |
|  |  | Pasture | Land development | 4.00 | 0.24 | 82 | 1200.00 | July, 2012 |
|  |  | Orchard | Horticulture | 10.00 | 0.60 | 192 | 3000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 2 no | 2.00 | 140 | 10000.00 | March, 2011 |
|  |  | Total |  | 166.00 | 11.96 | 1012 | 59800.00 |  |
| 3 | 2B3D3c2b | Wasteland | Engineering work | 223.00 | 13.38 | 1092 | 66900.00 | March, 2015 |
|  |  | Forest | Afforesttion | 90.00 | 5.40 | 375 | 27000.00 | July, 2012 |
|  |  | Pasture | Land development | 5.00 | 0.30 | 75 | 1500.00 | July, 2012 |
|  |  | Orchard | Horticulture | 20.00 | 1.20 | 315 | 6000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 2 no | 2.00 | 140 | 10000.00 | March, 2011 |
|  |  | Temple | EPA | 2 no | 2.00 | - | 10000.00 | March, 2011 |
| 4 | 2B3D3b1 | Total |  | 338.00 | 24.28 | 1997 | 121400.00 |  |
|  |  | Wasteland | Engineering work | 82.50 | 4.95 | 290 | 24750.00 | March, 2015 |
|  |  | Forest | Afforesttion | 22.00 | 1.32 | 82 | 7000.00 | July, 2012 |
|  |  | Pasture | Land development | 3.00 | 0.18 | 92 | 1000.00 | July, 2012 |
|  |  | Orchard | Horticulture | 10.00 | 0.60 | 170 | 3000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 3 no | 3.00 | 152 | 10000.00 | March, 2011 |
|  |  | Total |  | 120.50 | 10.23 | 786 | 51150.00 |  |
| 5 | 2B3D3b1a | Wasteland | Engineering work | 42.70 | 2.56 | 295 | 12800.00 | March, 2015 |
|  |  | Forest | Afforesttion | 5.00 | 0.30 | 78 | 1500.00 | July, 2012 |
|  |  | Orchard | Horticulture | 3.00 | 0.18 | 70 | 1000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 3 no | 3.00 | 152 | 10000.00 | March, 2011 |
|  |  | Total |  | 50.70 | 6.04 | 595 | 30200.00 |  |


| S.no | Name (s) of the villages | CPR particulars | Activity Proposed | Target |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Target area under the activity (ha) | $\begin{gathered} \hline \text { Estimated } \\ \text { expenditure } \\ \text { (laks.) } \end{gathered}$ | Expected no. of beneficiaries | Estimated contribution to WDF (Rs.) | Expected month \& year of completion (mm/yyyy) |
| 6 | 2B3D3c1c | Wasteland | Engineering work | 102.00 | 6.12 | 350 | 24750.00 | March, 2015 |
|  |  | Forest | Afforestion | 22.00 | 1.32 | 88 | 7000.00 | July, 2012 |
|  |  | Pasture | Land development | 3.00 | 0.18 | 70 | 1000.00 | July, 2012 |
|  |  | Orchard | Horticulture | 10.00 | 0.60 | 180 | 3000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 3 no | 3.00 | 140 | 15000.00 | March, 2011 |
|  |  | Total |  | 137.00 | 11.22 | 828 | 56150.00 |  |
| 7 | 2B3D3b1c | Wasteland | Engineering work | 107.00 | 6.42 | 410 | 32100.00 | March, 2015 |
|  |  | Forest | Afforestion | 45.00 | 2.70 | 188 | 13500.00 | July, 2012 |
|  |  | Pasture | Land development | 4.00 | 0.24 | 82 | 1200.00 | July, 2012 |
|  |  | Orchard | Horticulture | 10.00 | 0.60 | 192 | 3000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 2 no | 2.00 | 140 | 10000.00 | March, 2011 |
|  |  | Total |  | 166.00 | 11.96 | 1012 | 59800.00 |  |
| 8 | 2B3D3c1d | Wasteland | Engineering work | 223.00 | 13.38 | 1092 | 66900.00 | March, 2015 |
|  |  | Forest | Afforestion | 90.00 | 5.40 | 375 | 27000.00 | July, 2012 |
|  |  | Pasture | Land development | 5.00 | 0.30 | 75 | 1500.00 | July, 2012 |
|  |  | Orchard | Horticulture | 20.00 | 1.20 | 315 | 6000.00 | July, 2012 |
|  |  | Village Pond | Moisture Conservation | 5 no | 5.00 | 280 | 25000.00 | March, 2011 |
|  |  | Temple | EPA | 2 no | 2.00 | - | 10000.00 | March, 2011 |
|  |  | Total |  | 338.00 | 24.28 | 2137 | 136400.00 |  |

### 8.3 Sustainability and environment security

In the proposed watershed management plan of IWMP-III ${ }^{\text {rd }}$ watershed, proper blending of bio engineering measures will be applied on $60 \%$ of the total watershed area. Based on the results of studies conducted in this region, it is estimated that more $50 \%$ of the watershed area will be treated and consequently the soil loss and runoff from the area is expected to be reduced by $70 \%$ and $65 \%$ respectively. The proposed land use plan will improve the land utilization index and crop diversification index significantly as compared to the existing one. It will help in maintaining ecosystem integrity on sustained basis along with improving the livelihood security of the farming community.

### 8.4 Economic Analysis

Economic analysis of the project was carried by taking direct benefits and costs considering 25 year project life at 10 per cent discount rate. For this purpose of economic analysis, whole watershed development plan was divided into three sectors namely,
agriculture, horticulture and forest/fuel wood plantation. Net present value(NPV), Benefit cost ratio (BC) ratio criteria were employed to judge the economic efficiency of each enterprise and sector.

### 8.4.1 Agriculture

In rainfed agriculture the development cost can be recovered within one year as the present rainfed agriculture is being done on well maintained field, therefore, does not require much investment. In irrigated agriculture, investment of Rs. 414.33 lacs is proposed to made. The BC ratio of this sector is 1.6: 1 with in three years pay back period. (Table 18)
Table no. 76: Economics of agriculture sector

| S.No. | Sector | Area (ha) | NPV (Rs.) | BC ratio |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Irrigated agriculture | 3400.00 | 94755630 | $1.6: 1$ |
| 2 | Rainfed agriculture | 1640.00 | 16642810 | $1.2: 1$ |
| 3 | Total | 5040.00 | 111398440 | $1.4: 1$ |

### 8.4.2 Horticulture

Economic analysis of horticulture plantation in agri-horti system at IWMP-II ${ }^{\text {nd }}$ watershed Project life is considered to be 25 years and discount rate for NPV estimation is $10 \%$

Table no. 77: Economics of Horticulture sector

| S.No. | Common <br> Name | Scientific name | Area (ha) | NPV of net <br> venefit (Rs.) | BC ratio |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Aonla | Embelica officinalis | 60.00 | 1057725 | $3.97: 1$ |
| 2 | Ber | Zyziphus mauritiana | 30.00 | 251962 | $2.81: 1$ |
| 3 | Bael | Aegle marmelos | 31.00 | 169887 | $2.84: 1$ |
|  | Total |  | 121.00 | $1,47,9574$ | 3.512 |

### 8.4.3 Forest/ Fuel wood plantation

Economic analysis of fuel wood plantation at IWMP-III watershed. Project life is considered to be 25 years and discount rate for NPV estimation is $10 \%$

Table no. 78: Economics of aforestation sector

| S.No. | Common Name | Scientific name | Area (ha) | NPV of net benefit (Rs.) | BC ratio |
| :--- | :---: | :--- | :--- | :--- | :--- |
| 1 | Vilayati Babul | Prosopis juliflora | 550.00 | 384482 | $2.11: 1$ |

### 8.4.4 Food sufficiency

Achieving self sufficiency in food production is one of the prime objectives of the project. The status of food requirement and production before and after the project is presented in Table.

Table no 79: Status of food requirement and availability per annum in IWMP-IIIRD watershed

| S.No. | Items | Requirement (q/yr) |  | Before project |  | Proposed |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  |  |  | Availability <br> (q/yr) | Deficit or <br> surplus <br> $(\mathbf{q} / \mathbf{y r})$ | Availability <br> (q/yr) |  |
|  |  |  | Deficit or <br> surplus (q/yr) |  |  |  |  |
| 1 | Cereals | 55000 | 49850 | -6150 | 79460 | +24460 |  |
| 2 | Pulses | 16000 | 12340 | -3660 | 28936 | +12936 |  |
| 3 | Oil seeds | 22000 | 17750 | -4250 | 29972 | +7972 |  |
| 4 | Vegetable | 33000 | 25330 | -8670 | 38540 | +5540 |  |

## 9. EXPECTED OUTCOMES

### 9.1 Employment

Employment has always been a problem in the village. The principal occupations of the people are dry land agriculture, animal husbandry and casual labour work. However, rain fall being very limited and erratic, agriculture suffers, i.e. at best they can take only a single crop, which keeps them partially engaged for about 4 months. Lack of fodder makes animal husbandry very difficult too. So, animal husbandry does not keep them engaged full time. Thus the people mainly depend upon casual labour, either in the village itself or outside it.

The project plans for creation of both wage employment and self employment opportunities. Wage employment would be created by engaging people in watershed physical works like construction of earthen bunds, farm bunds, village pond, plantation, etc. Self employment would be created by providing the people with cash support in the form of direct livelihood activities like agriculture, animal husbandry and enterprise development.

Table no. 80: Employment in Project area

| S.no. | No. of the villages | Wage employment |  |  |  |  |  |  |  |  |  | Self employment |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. of man days |  |  |  |  | No. of beneficiaries |  |  |  |  |  |  |  |  |  |
|  |  | SC | ST | Others | Women | Total | SC | ST | Others | Women | Total | SC | ST | Others | Women | Total |
| 1 | $\begin{gathered} 36 \\ \left(\text { IWMP }^{\text {IIII }}\right. \text { (rd } \end{gathered}$ | 273400 | - | 274795 | 192420 | 548195 | 8630 | - | 9730 | 5710 | 18360 | 156 | - | 1781 | 123 | 334 |

### 9.2. Migration

Low rainfall results in very little fodder availability in the locality.. On account of agriculture and animal husbandry providing only part time employment for some part of the year, the people migrate for a better half of the year for wage labour. Employment opportunities in the local area as mentioned above will ensure lessening seasonal migration from the area.

Table no. 81: Details of seasonal migration from Project area

| S.no. | Names of villages | No. of persons migration | No. of days per year of migration | $\begin{aligned} & \text { Major reason(s) } \\ & \text { for migration } \end{aligned}$ | For reduced migration identify major activities of IWMP responsible |  | Expected reduction in No. of persons migration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | (a) Structures | (b) Livelihoods |  |
| 1 | IWMP III $^{\text {rd }}$ (36 village) | 1250 | 160 | Due to <br> employment  | Structure | Livelihood | 456 |

### 9.3 Drinking water

As a result of the watershed activities, it is expected that the quantity and quality of drinking water would improve.

## Table no. 82: Status of Drinking water

| S. No. | Names of Villages | Availability of drinking water (no. of months in a year) |  | Quality of drinking water |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pre-project | Expected Post project | Pre-project | Expected Postproject |  |
| 1 | IWMP III ${ }^{\text {rd }}$ (36 village) | 10 month | 12 month | General water | Good water | - |

### 9.4 Vegetative cover

There is negligible area under tree cover. The village has a negligible forest area which consists of only Prosopis Juliflora (babool). Trees like Neem and Alianthus are seen just here and there, not concentrated in any area. It is planned that 681.00 ha land to be covered under new plantation.

Table no. 83: Forest/vegetative cover

| S. No. | Name of Village | Existing area under tree cover (ha) | Area under tree cover <br> proposed |
| :---: | :--- | :---: | :---: |
| 1 | IWMP III $^{\text {rd }}(36$ village $)$ | - | 671.00 Ha |

### 9.5 Livestock

The village has quite a good of livestock population. These include cows, bullocks, buffaloes, goats, sheep and camels. The interventions like provision of good quality cows and buffaloes, the establishment of a fodder bank and other such related activities would spur up the dairy development in the village. It is expected that the post project period would see a substantial increase in livestock population and yield from them.

Table no. 84: Details of livestock in the project areas (for fluids please mention in litres, for solids please mention in kgs. and income in Rs.)

| S. <br> no. | Name of MW | Type of animal | Pre Projected |  |  | Expected Post Projected |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | No | Yield | Income | No | Yield | Income |  |
| 1 | IWMP III | Buffalow | 5690 | 2.33 lit/animal | 20.00/day | 11786 | 4.00litanimal | 30.00/day |  |
|  | (36 village) | Cow | 3775 | 1.84lit/animal | 16.00/day | 7668 | 3.004lit/animal | 25.00/day |  |
|  |  | Sheep | 1390 | 10kg/animal | 2000.00/animal | 7681 | 20kg/animal | 4000.00/animal |  |
|  |  | Goats | 9477 | $8 \mathrm{~kg} / \mathrm{animal}$ | 1600.00/animal | 405 | $16 \mathrm{~kg} / \mathrm{animal}$ | 3200.00/animal |  |
|  |  | Pigs | 710 | 20.0 kg/ha | 2000.00/animal | 710 | $50.0 \mathrm{~kg} / \mathrm{ha}$ | 10000.00/animal |  |
|  |  | Poultry | - | $0.75 \mathrm{~kg} / \mathrm{bird}$ | 150.00/bird | - | 0.75kg/bird | 300.00/bird |  |
|  |  | Fish | - | $10.73 \mathrm{q} / \mathrm{ha}$ | 15000.00/ha | - | $50.00 \mathrm{q} / \mathrm{ha}$ | 75000.00/ha |  |

9.6 Vegetation/ crop related outcomes:

Table no. 85: Details of karif drop area and yield in the project areas

| $\begin{gathered} \hline \text { S. } \\ \text { No } \end{gathered}$ | Names of villages | Name of crops | Pre-project |  |  |  |  |  | Expected Post-project |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Area (ha) |  | Average Yield (Qtl) per ha. |  | Total Production (Qtl) |  | Area (ha) |  | Average Yield (Qtl) per ha. |  | Total Production (Qtl) |  |
|  |  |  | Irri | Rf. |
| 1 | 2B3D3c1e | Paddy | 60 | 10 | 18.00 | 10.00 | 1080 | 100 | 268 | 78 | 30.00 | 20.00 | 8040 | 1560 |
|  |  | Others* | - | 200 | - | 8.00 | - | 1600 | - | 300 | - | 15.00 | - | 4500 |
| 2 | 2B3D3c2a | Paddy | 100 | 50 | 18.00 | 10.00 | 1800 | 900 | 290 | 110 | 30.00 | 20.00 | 8700 | 2200 |
|  |  | Others* | - | 250 | - | 8.00 | - | 2000 | - | 400 | - | 15.00 | - | 6000 |
| 3 | 2B3D3c2b | Paddy | 200 | 100 | 18.00 | 10.00 | 3600 | 1000 | 524 | 217 | 30.00 | 20.00 | 15720 | 4340 |
|  |  | Others* | - | 400 | - | 8.00 | - | 3200 | - | 700 | - | 15.00 | - | 10500 |
| 4 | 2B3D3b1 | Paddy | 50 | 80 | 18.00 | 10.00 | 900 | 800 | 251 | 102 | 30.00 | 20.00 | 7530 | 2040 |
|  |  | Others* | - | 150 | - | 8.00 | - | 1120 | - | 300 | - | 15.00 | - | 4500 |
| 5 | 2B3D3b1a | Paddy | 30 | 20 | 18.00 | 10.00 | 540 | 200 | 238 | 50 | 30.00 | 20.00 | 7140 | 1000 |
|  |  | Others* | - | 90 | - | 8.00 | - | 720 | - | 200 | - | 15.00 | - | 3000 |
| 6 | 2B3D3c1c | Paddy | 50 | 40 | 18.00 | 10.00 | 900 | 400 | 283 | 90 | 30.00 | 20.00 | 8490 | 1800 |
|  |  | Others* | - | 170 | - | 8.00 | - | 1360 | - | 300 | - | 15.00 | - | 4500 |
| 7 | 2B3D3b1c | Paddy | 40 | 30 | 18.00 | 10.00 | 720 | 400 | 257 | 80 | 30.00 | 20.00 | 7710 | 1600 |
|  |  | Others* | - | 180 | - | 8.00 | - | 1440 | - | 300 | - | 15.00 | - | 4500 |
| 8 | 2B3D3c1d | Paddy | 200 | 100 | 18.00 | 10.00 | 3600 | 1000 | 471 | 150 | 30.00 | 20.00 | 14130 | 3000 |
|  |  | Others* | - | 400 | - | 8.00 | - | 3200 | - | 500 | - | 15.00 | - | 7500 |
|  | Total |  | 730 | 2270 | 144 | 144 | 13140 | 19440 | 2582 | 3877 | 240 | 280 | 77460 | 62540 |
| Irri.- Irrigated Rf.- Rainfed <br> Others: Pigeon pea, moong urd, jwar, etc   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table no. 86: Details of Rabi drop area and yield in the project areas *

| S.No. | Names of villages | Name of crops | Pre-project |  |  |  |  |  | Expected Post-project |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Area (ha) |  | Average Yield (Qtl) per ha. |  | Total Production (Qtl) |  | Area (ha) |  | Average Yield (Qtl) per ha. |  | Total Production (Qtl) |  |
|  |  |  | Irri | Rf. |
| 1 | 2B3D3c1e | Wheat | 60 | 160 | 25.00 | 20.00 | 1500 | 1600 | 268 | 200 | 30.00 | 25.00 | 8040 | 5000 |
|  |  | Others* | - | 90 | - | 10.00 | - | 900 | - | 78 | - | 15.00 | - | 1170 |
| 2 | 2B3D3c2a | Wheat | 100 | 250 | 25.00 | 20.00 | 2500 | 5000 | 290 | 300 | 30.00 | 25.00 | 8700 | 7500 |
|  |  | Others* | - | 100 | - | 10.00 | - | 1000 | - | 110 | - | 15.00 | - | 1650 |
| 3 | 2B3D3c2b | Wheat | 200 | 400 | 25.00 | 20.00 | 5000 | 8000 | 524 | 600 | 30.00 | 25.00 | 15720 | 15000 |
|  |  | Others* | - | 150 | - | 10.00 | - | 1500 | - | 212 | - | 15.00 | - | 3180 |
| 4 | 2B3D3b1 | Wheat | 50 | 180 | 25.00 | 20.00 | 900 | 800 | 251 | 200 | 30.00 | 25.00 | 7530 | 5000 |
|  |  | Others* | - | 80 | - | 10.00 | - | 1120 | - | 102 | - | 15.00 | - | 1530 |
| 5 | 2B3D3b1a | Wheat | 30 | 90 | 25.00 | 20.00 | 540 | 200 | 238 | 200 | 30.00 | 25.00 | 7140 | 5000 |
|  |  | Others* | - | 20 | - | 10.00 | - | 720 | - | 50 | - | 15.00 | - | 750 |
| 6 | 2B3D3c1c | Wheat | 50 | 200 | 25.00 | 20.00 | 900 | 400 | 283 | 200 | 30.00 | 25.00 | 8490 | 5000 |
|  |  | Others* | - | 50 | - | 10.00 | - | 1360 | - | 90 | - | 15.00 | - | 1350 |
| 7 | 2B3D3b1c | Wheat | 40 | 200 | 25.00 | 20.00 | 720 | 400 | 257 | 200 | 30.00 | 25.00 | 7710 | 5000 |
|  |  | Others* | - | 40 | - | 10.00 | - | 1440 | - | 80 | - | 15.00 | - | 1200 |
| 8 | 2B3D3c1d | Wheat | 200 | 400 | 25.00 | 20.00 | 3600 | 1000 | 471 | 400 | 30.00 | 25.00 | 14130 | 10000 |
|  |  | Others* | - | 110 | - | 10.00 | - | 3200 | - | 150 | - | 15.00 | - | 2250 |
| Total |  |  | 730 | 2520 | 200 | 240 | 15660 | 28640 | 2582 | 3172 | 240 | 320 | 77460 | 70580 |
| ri.- Irrigated Rf.- <br> Others crop: chick pea, pea, mustard, potato etc  Rainfed |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 10- DETAILS ESTIMATE OF WATERSHED DEVELOPMENT WORK PHASES (ANNEXURE-1)

DRAWING OF C.B., S.B., P.B., AND M.B.
(All dimensions in Metre) (Not to Scale)

(C.B., Cross-Section $-1.085 \mathrm{~m}^{2}$ )


## DRAWING OF EARTHEN CHEKDAM / GULLY PLUG


(W.H.B., Cross-Section - $22.00 \mathrm{~m}^{2}$ )
(All dimensions in Metre)

## DESIGN OF CONTOUR BUND

| Type of Soil | - Clay |
| :---: | :---: |
| Rain fall | - 24 hr in $\mathrm{cm}-25 \mathrm{~cm}$ |
| Fied Stop -1\% |  |
| Virtical interval (Vi) | $=[\mathrm{s} / 3+2]$ |
|  | $=[1 / 3+2]$ |
| Horizontal interval (HI) | $=0.70 \mathrm{~m}$ |
|  | $=100 x \mathrm{~V} . \mathrm{I} / \mathrm{s}$ |
| Heidht of Bond h | $=($ Rex vi) $/ 50$ |
|  | $=(25 x 0.7) / 50$ |
|  | 0.35 |
|  | 0.59 |
|  | Say 0.6 m |
| Ferr bord | = 15\% of high mimimum -10 cm |
| Hight | $=0.60+0.10$ |
|  | $=0.70 \mathrm{~m}$ |
| Taking top widh of bond 0.50 m and side slope 1.5:1 |  |
| Then base of bond | $=0.50+(1.10 \mathrm{~d}) \mathrm{x} 2$ |
|  | $=2.60 \mathrm{~m}$ |
| Coress-Seclion of bond | $=(2.50+2.60) x 0.70 / 2$ |
|  | $=1.085 \mathrm{~m}^{2}$ |
| Length of bond | $=100 \mathrm{~s} / \mathrm{V} . \mathrm{I}$. |
|  | =100x1/0.70 |
|  | $=142.85 \mathrm{~m} / \mathrm{ha}$ |
|  | Say $120 \mathrm{~m} / \mathrm{ha}$ |
| Earth work /ha | = 250x1.085 |
|  | $=162.75$ cum |
|  | $=162.75 \mathrm{cum}$ |
| Cort Rs./ ha | =162.7 x39.16=6373.29 |
|  | Say 6375.00 |

## DESIGN OF SUMBERGENCE BOND



## TYPICAL SECAION OF FILED BUND

| Top widht | $=0.50 \mathrm{~m}$ |
| :--- | :--- |
| Side slope | $=1: 1$ |
| Height of bound | $=0.50 \mathrm{~m}$ |
| Bottom Widht | $=1.50 \mathrm{~m}$ |
| Cross section | $=(0.580+1.50) \times 0.50 / 2=100 \mathrm{cum}$ |
| Length per hectare | $=200 \mathrm{~m}$ |
| Earhwork | $=200 \times 0.50=100 \mathrm{cum}$ |
| Cost $39.16 /$ cum | $=$ Rs. 3916.00 |
| Cost per hectare |  |

TYPICAL SECTION OF P.B., M.B., S.B0.

Top width
Side slope
Height
Bottom
Cross section
Cost/meter
$=0.70 \mathrm{~m}$
= 1.5: 1
$=1.30 \mathrm{~m}$
$=4.60 \mathrm{~m}$
$=(0.70+4.60) \times 1.30 / 2=3.445 \mathrm{~m}^{2}$
= Rs. 142.00

## TYPICAL SECTION OF EARTHEN CHECK DAM / GULLY PLUG

Top width
Side slope
Height
Bottom Width
Cross section
Cost per meter
$=1.50 \mathrm{~m}$
$=2: 1$
$=2.10 \mathrm{~m}$
$=9.90 \mathrm{~m}$
$=(1.50+9.90) \times 2.10 / 2$
$=11.97 \mathrm{~m}^{2}$
$=$ Rs. 551.45

TYPICAL SECION OF CHEK DAM / GULLY PLUG
Top Width
Side slope
Height
Bottom Width
Cross Section
Cost/meter

$$
\begin{aligned}
& =2.00 \mathrm{~m} \\
& =2: 1 \\
& =2.50 \mathrm{~m} \\
& =12.00 \mathrm{~m} \\
& =(2.00+12.00) \times 2.50 / 2 \\
& =17.50 \mathrm{~m}^{2} \\
& =\text { Rs. } 839.12
\end{aligned}
$$

TYPICAL SECTIO0N OF W.H.B

Top width
Side slope
Height
Bottom Width
Cross section
Per meter cost

$$
\begin{aligned}
& =2.50 \mathrm{~m} \\
& =2.1 \\
& =2.75 \mathrm{~m} \\
& =13.50 \mathrm{~m} \\
& =(2.50+13.50) \times 2.75 / 2 \\
& =22.00 \mathrm{~m}^{2} \\
& =\text { Rs. } 1085.92
\end{aligned}
$$

DRAWING OF SPILLWAY OF CREST LENGTH 0.5 m


Design of Drop Spillway to be constructed at a place in a gully having width of 1.0 m and catchment area 1.00 and net drop 0.50 m Taking rainfall intensity for duration equal to time of concentration of watershed and design return period of 25 years, as 120 $\mathrm{mm} / \mathrm{hr}$. The coefficient of runoff for the watershed is 0.3 .
1.Hydrologic design - The design peak runoff rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ for the watershed form Rational formula is given as :

$$
\mathrm{Q}=\quad \underline{\text { C.I.A. }}=\frac{0.3 \times 120 \times 1.00}{360} \quad=36 / 360 \quad=0.10 \mathrm{cum} / \text { second }
$$

2. Hydraulic design- The maximum discharge capacity of the rectangular weir given by

$$
\mathrm{Q}=\underline{1.711 \mathrm{LH}^{3 / 2}}=(1.1+0.01 \mathrm{f})=\mathrm{o} \text { find suitable value of } \mathrm{L} \& \mathrm{H}
$$

Let us assume $\quad \mathrm{L}=0.50 \mathrm{~m}$ (since width of gully is 1.00 m )

$$
\begin{aligned}
& 0.10=\underline{1.711 \mathrm{LH}^{3 / 2}} \quad=\underline{1.711 \mathrm{~L} \mathrm{H}^{3 / 2}} \\
& \text { (1.1.+0..01x 0.5) (1.105) } \\
& \mathrm{LH}^{3 / 2}=\underline{1.105 \times .10}=\underline{0.1105}=0.064 \\
& 1.711 \\
& 1.711 \\
& \mathrm{H}^{3 / 2}=\underline{0.064}=0.128 \\
& 0.50 \\
& H=(0.128)^{3 / 2} \quad=0.25 \mathrm{~m}
\end{aligned}
$$

Test L/h $=0.50=2 . \geq 2.0$ hence O.K.; $0.25 \mathrm{~h} / \mathrm{f}=\underline{0.25} \quad=0.50 \leq 0.5$ hence O.K.

## 3. Structural design -

1. Minimum headwall extension, $\mathrm{E}=(3 \mathrm{~h}+0.6)$ or 1.5 f whichever is greater $\mathrm{E}=3 \times 0.5+0.6$ or $1.5 \times 0.50$

$$
\mathrm{E}=2.10 \mathrm{~m} \quad \text { or } \quad 0.75+\mathrm{m} \quad=\text { Adopted } 2.10 \mathrm{~m}
$$

2. Length of apron basin $\mathrm{L}_{\mathrm{B}}=(2.28 \mathrm{~h} / \mathrm{f}+0.54)=0.50(2.20 \times \underline{0.5}+0.54)-0.5$

$$
=0.50 \times 2.74 \quad=1.37 \mathrm{~m} \text { says } 1.40 \mathrm{~m}
$$

3. Height of end sill, $S=h=0.50=0.16 \mathrm{~m}$ says 0.20 m
4. Height of wing wall and side wall at Junction:

$$
\mathrm{J}=2 \mathrm{~h} \text { or }\left[\mathrm{f}+\mathrm{h}+\mathrm{S}-\left(\mathrm{L}_{\mathrm{B}}+0.10\right) / 2\right] \text { whichever is greater }=2 \times 0.20 \text { or }[0.50+0.50+0.16-
$$

(1.37+0.10/2)]

$$
=1.0 \text { or }[1.16-0.735]=1.0 \text { or } 0.425 \text { (adopt } \mathrm{J}=1.00 \mathrm{~m} \text { ) }
$$

5. $\mathrm{M}=2(\mathrm{f}+1.33 \mathrm{~h}-\mathrm{J})=2(0.050+1.16-0.733 \mathrm{x} 0.25-1.00)=2 \mathrm{x}(-0.167)=-0.335$
6. $\mathrm{K}=\left(\mathrm{L}_{\mathrm{B}}+0.1\right)-\mathrm{M}=(1.037+0.1)-0.335=1.47-0.335=1.135 \mathrm{~m}$

Toe and cut off walls
Normal scour depth (N S D ) $=0.473 \times(Q / f)^{1 / 3}=0.473 \times(0.1 / 1)^{1 / 3}=0.473 \times 0.464=0.219$
Maximum Scour depth (M S D ) $=1.5 \times \mathrm{N} \mathrm{S} \mathrm{D}=1.5 \times 0.219=0.328 \mathrm{~m}$ Says 0.35 m
Depth of cutoff / Toe wall $=0.35 \mathrm{~m}$
Apron thickness : For an over fall of 0.5 m .The apron thickness in concrete construction is 0.20 m since structure is constructed in masonry ,the Apron thickness will be $0.20 x 1.50=0.30 \mathrm{~m}$

Wall thickness: The thickness of wall of the structure (masonry construction) is given below : :

| Description | Thickness of wall |  |
| :--- | :---: | :---: |
|  | T op width | Bottom width |
| Head wall | 0.40 | 1.00 |
| Side wall | 0.30 | 0.80 |
| Wing all and head wall extension | 0.30 | 0.60 |

DETAIL ESTIMATE OF DROP SPILLWAY OF CREST LENGTH 0.5 METRE

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Side wall | 2 | 1.50 | 1.00 | 1.15 | 3.45 |
| 2 | Head wall | 1 | 0.50 | 1.20 | 1.15 | 0.69 |
| 3 | Head wall extension | 2 | 2.20 | 0.80 | 1.15 | 4.04 |
| 4 | Wing wall | 2 | 1.15 | 0.80 | 1.15 | 2.11 |
| 5 | Tow wall | 1 | 0.50 | 0.80 | 0.60 | 0.24 |
| 6 | Cut off wall | 1 | 4.70 | 0.80 | 0.60 | 2.25 |
| 7 | Apron | 1 | 0.50 | 1.50 | 0.60 | 0.45 |
| Total |  |  |  |  |  | 13.23 cum |


|  | ying of sand in the bed of |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.No. | Description of work | No. | L | B | D/H | Quantity |
| 1 | Side wall | 2 | 1.50 | 1.00 | 0.10 | 0.300 |
| 2 | Head wall | 1 | 0.50 | 0.40 | 0.10 | 0.020 |
| 3 | Wing wall | 2 | 1.15 | 0.80 | 0.10 | 0.184 |
| 4 | Toe wall | 2 | 0.50 | 0.80 | 0.10 | 0.040 |
| 5 | Cut off wall | 1 | 4.70 | 0.80 | 0.10 | 0.376 |
| 6 | Apron | 1 | 0.50 | 1.50 | 0.10 | 0.075 |
| Total |  |  |  |  |  | 0.995 cum |

3 C.C.W. $\mathbf{1 : 3 :} \mathbf{6}$ in foundation

| S.No. | Description of work | No. | $\mathbf{L}$ | $\mathbf{B}$ | D/H | Quantity |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut off wall | 1 | 4.70 | 0.80 | 0.15 | 0.564 |
| 2 | Head wall | 1 | 0.50 | 0.40 | 0.15 | 0.030 |
| 3 | Side wall | 2 | 1.50 | 1.00 | 0.15 | 0.450 |
| 4 | Wing wall | 2 | 1.15 | 0.80 | 0.15 | 0.276 |
| 5 | Toe wall | 1 | 0.50 | 0.80 | 0.15 | 0.060 |
| 6 | Apron | 1 | 0.50 | 1.50 | 0.15 |  |

## 4 Brick masonry 1:4

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | Cut off wall | 1 | 4.70 | 0.80 | 0.45 | 0.45 |
|  |  | 1 | 4.70 | 0.60 | 0.45 | 0.45 |

5. C.C.W. 1:2:4 in the wall

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Head wall | 1 | 0.50 | 0.40 | 0.025 | 0.005 |
| 2 | Side wall | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & \hline 0.40 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 0.025 \\ & 0.025 \end{aligned}$ | $\begin{aligned} & 0.007 \\ & 0.023 \end{aligned}$ |
| 3 | Head wall extension | 2 | 2.10 | 0.40 | 0.025 | 0.042 |
| 4 | Wing wall | 2 | 1.52 | 0.40 | 0.025 | 0.030 |
| 5 | Toe wall | 1 | 0.50 | 0.40 | 0.025 | 0.005 |
| 6 | Apron | 1 | 0.50 | 1.50 | 0.025 | 0.018 |
| Total |  |  |  |  |  | 0.130cum |

## 6. Tuck Pointing 1:3

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Head wall | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$ | - | $\begin{aligned} & 0.60 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.42 \end{aligned}$ |
| 2 | Side wall | $\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{gathered} 1.50 \\ (0.30+1.50) / 2 \\ \hline \end{gathered}$ | - | $\begin{aligned} & \hline 1.00 \\ & 0.30 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.00 \\ & 0.55 \\ & \hline \end{aligned}$ |
| 3 | Head wall extension | 2 | 2.10 | - | 1.00 | 4.20 |
| 4 | Wing wall | 2 | 1.15 |  | $(1.00+0) / 2$ | 1.15 |
| Total |  |  |  |  |  | $9.62 \mathrm{~m}^{2}$ |


| S.No. |  | Particulars | Quantity | Cement (Bags) | $\begin{array}{c}\text { Coarse Sand } \\ \text { (cum) }\end{array}$ | $\begin{array}{c}\text { Brick (No.) }\end{array}$ | $\begin{array}{c}\text { G.S.B. 25-40 mm } \\ \text { (cum) }\end{array}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sand laying | 0.995 cum | - | 0.995 | - | - |  |
| 2 | C.C.W. 1:3:6 | 1.492 cum | 6.61 | 0.671 | - | - |  |
| 3 | Brick Masonry |  |  |  |  |  |  |
| (cum) |  |  |  |  |  |  |  |$]$

Cost of Materials

| S.No. | Name of Materials | Rate | Amount |  |
| :--- | :--- | :---: | :--- | :--- |
|  |  |  |  |  |
| 1 | Cement | 47 Bags | $255.00 / \mathrm{bag}$ |  |
| 2 | Coarse sand | 7.327 cum | $910.00 / \mathrm{cum}$ | 11985.00 |
| 3 | Brick | 8180 | $4500.00 / \mathrm{ch}$ | 6667.57 |
| 4 | G.S.B. $25-40 \mathrm{~mm}$ | 1.342 cum | $855.00 / \mathrm{cum}$ | 1147.41 |
| 5 | Grit $10-20 \mathrm{~mm}$ | 0.110 cum | $1250.00 / \mathrm{cum}$ |  |
|  | Total |  | 137.50 |  |

## LABOUR CHARGE

| S.No. | Name of Materials | Quantity | Rate | Amount |
| :---: | :--- | :--- | :--- | :--- |
| 1 | Earth Work | 13.23 cum | $36.66 / \mathrm{cum}$ | 485.01 |
| 2 | Sand Laying | 0.995 cum | $33.33 / \mathrm{cum}$ | 33.16 |
| 3 | C.C.W. 1:3:6 | 1.495 cum | $494 / \mathrm{cum}$ | 337.04 |
| 4 | Brick masonry | 16.36 cum | $400 / \mathrm{cum}$ | 6544.00 |
| 5 | C.C.W. 1:2:4 | 0.130 cum | $494 / \mathrm{cum}$ | 64.22 |
| 6 | Tuck Pointing | $9.62 \mathrm{~m}^{2}$ | $51.61 / \mathrm{m}^{2}$ | 496.48 |
| 7 | Curing | 16.36 cum | $25.00 / \mathrm{cum}$ | 409.00 |
| 8 | Chowkidar | 6 Man days | $100.00 / \mathrm{Man} \mathrm{day}$ | 600.00 |
| 9 | Head Load $\&$ local taion cost $10 \%$ cost of <br> material | - | - | 3670.64 |


| Total Expenditure |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| 1. Cost of Materials | 56747.48 |  |  |  |
| 2 Labour Charges | 13039.55 |  |  |  |
| Total |  |  |  | Rs. 69787.03 |

Design of Drop Spillway to be constructed at a place in a gully having width of 1.0 m and Catchments area 1.00 and net drop 0.50 m Taking rainfall intensity for duration equal to time of concentration of watershed and design return period of 25 years, as 120 $\mathrm{mm} / \mathrm{hr}$. The coefficient of runoff for the watershed is 0.3 .
1.Hydrologic design - The design peak runoff rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ for the watershed form Rational formula is given as :

$$
\mathrm{Q}=\frac{\text { C.I.A. }}{360}=\frac{0.3 \times 120 \times 5.0}{360}=0.50 \mathrm{~m}^{3} / \mathrm{s}
$$

2. Hydraulic design- The maximum discharge capacity of the rectangular weir given by

$$
\mathrm{Q}=\frac{1.711 \mathrm{LH}^{3 / 2}}{(1.1+0.01 \mathrm{f})=}=
$$

To find suitable value of L\&H
Let us assume

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{L}=1.0 \mathrm{~m} \text { (since width of gully is } 2.00 \mathrm{~m}) \\
\left.0.50=\frac{1.711 \mathrm{LH}^{3 / 2}}{(1.1+0.01 \mathrm{x}} 0.5\right) \\
=\frac{1.711 \mathrm{~L} \mathrm{H}^{3 / 2}}{(1.2)} \\
\mathrm{L} \mathrm{H}^{3 / 2}=\underline{1.120 \times 0.5}= \\
1.711
\end{array} \\
& \mathrm{H}^{3 / 2}=\underline{0.375}=0.350 \\
& \mathrm{H}=(0.350)^{3 / 2} \quad 1.711 \mathrm{x} 4 \\
& =0.49 \mathrm{~m} \text { says } 0.50 \mathrm{~m}
\end{aligned}
$$

$$
\text { Test } \mathrm{L} / \mathrm{h}=\underline{1.00}=2.00 \geq 2.0 \text { hence O.K.; }
$$

$$
\mathrm{h} / \mathrm{f}=\frac{\frac{0.25}{0.50}}{1.00} \quad=\leq 0.5 \leq \text { hence O.K. }
$$

Heace he designed hydraulic dimensions of the Spilay are :
Crest Length $(\mathrm{L})=1.00 \mathrm{~m}$
Weir depth (h) $=0.50 \mathrm{~m}$

## 3. Structural design -

1. Minimum headwall extension, $\mathrm{E}=(3 \mathrm{~h}+0.6)$ or 1.5 f whichever is greater $; 3 \mathrm{x} 0.50+0.6$ or 1.5 x 1 $\mathrm{E}=(1.5+060)$ or 21.50 m
$=2.10$ or 1.50 Adopted $=2.10 \mathrm{~m}$
2. Length of apron basin $L_{B}=(2.28 \mathrm{~h} / \mathrm{f}+0.54)=1(2.28 \times \underline{0.50}+0.54=1.68 \mathrm{~m}$
3. Height of end sill, $S=\underline{h}=\underline{0.50}=0.16 \mathrm{~m}$
$3 \quad 3$
4. Height of wing wall and side wall at Junction:

$$
\begin{aligned}
& \mathrm{J}=2 \mathrm{~h} \text { or }\left[\mathrm{f}+\mathrm{h}+\mathrm{S}-\left(\mathrm{L}_{\mathrm{B}}+0.10\right) / 2\right] \text { whichever is greater }=2 \times 0.50 \text { or }[1.0+0.50+0.16-(1.68+0.10 / 2)] \\
& =1.0 \text { or }[1.66-0.89]=1.00 \text { or } 0.77(\text { adopt } \mathrm{J}=1.00 \mathrm{~m}) \\
5 . \mathrm{M}=2(\mathrm{f}+1.33 \mathrm{~h}-\mathrm{J}) \quad & =2(1.0+1.33 \times 0.50-1.00)=2(-0.1665-1.00)=1.33 \mathrm{~m}
\end{aligned}
$$

$$
\text { 6. } \mathrm{K}=\left(\mathrm{L}_{\mathrm{B}}+0.1\right)-\mathrm{M}=(1.68+0.1)-1.33=0.45 \mathrm{~m}
$$

Toe and cut off walls

$$
\begin{aligned}
\text { Normal scour depth (N S D ) } & =0.473 \times(\mathrm{Q} / \mathrm{f})^{1 / 3}=0.473 \times(0.5 / 1.0)^{1 / 3} \text { taking } \mathrm{f}=1 \\
& =0.473 \times(0.5)^{1 / 3}=0.473 \times 0.793=0.375 \mathrm{~m}
\end{aligned}
$$

Maximum Scour depth (M S D ) $=1.5 \times \mathrm{N}$ S D $=1.5 \times 0.375=0.56 \mathrm{~m}$ Says
Depth of cutoff / Toe wall 0.56 m say 0.60 m
Apron thickness: For an over fall of 1.0 m . The apron thickness in concrete construction is 0.30 m since structure is constructed in masonry ,the Apron thickness will be $0.30 x 1.50=0.45 \mathrm{~m}$

Wall thickness : The thickness of wall of the structure ( masonry construction) is given below .:

| Description | Thickness of wall |  |
| :--- | :---: | :---: |
|  | T op width | Bottom width |
| Head wall | 0.45 | 1.00 |
| Side wall | 0.30 | 0.80 |
| Wing all and head wall extension | 0.30 | 0.60 |

DETAIL ESTIMATE OF DROP SPILLWAY CREST LENGTH

1. Earth work n cutting

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Side wall | 2 | 1.70 | 1.00 | 1.15 | 3.91 |
| 2 | Head all | 1 | 0.80 | 1.20 | 1.15 | 1.10 |
| 3 | Head wall extension | 2 | 2.20 | 0.80 | 1.15 | 4.04 |
| 4 | Toe wall | 1 | 0.80 | 0.70 | 0.80 | 0.45 |
| 5 | Cut off | 1 | 5.20 | 0.80 | 0.70 | 2.91 |
| 6 | Apron | 1 | 1.70 | 0.80 | 0.60 | 0.81 |
| 7 | Wing wall | 2 | 1.30 | 0.80 | 1.15 | 2.39 |

2. Laying of sand in the bed \& foundation

| S. <br> No. | Description of work | No. | L | D/H | Quantity |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Side wall | 2 | 1.70 | 1.00 | 0.10 | 0.340 |
| 2 | Head all | 1 | 1.00 | 0.40 | 0.10 | 0.040 |
| 3 | Head wall extension | 2 | 2.10 | 0.80 | 0.10 | 0.336 |
| 4 | Toe wall | 1 | 1.00 | 0.80 | 0.10 | 0.080 |
| 5 | Cut off | 1 | 5.20 | 0.80 | 0.10 | 0.416 |
| 6 | Apron | 1 | 1.60 | 1.00 | 0.10 | 0.160 |
| 7 | Wing wall | 2 | 0.80 | 0.10 | 0.208 |  |
|  | Total |  |  |  | 1.580 cum |  |

## 3.C.C.W 1:3:6 in founjdation

| S. <br> No. | Description of work | No. | L | B | D/H | Quantity |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Side wall | 2 | 1.70 | 1.00 | 0.15 | 0.510 |
| 2 | Head all | 1 | 1.00 | 0.40 | 0.15 | 0.060 |
| 3 | Head wall extension | 2 | 2.10 | 0.80 | 0.15 | 0.378 |
| 4 | Toe wall | 1 | 1.00 | 0.80 | 0.15 | 0.120 |
| 5 | Cut off | 1 | 5.20 | 0.80 | 0.15 | 0.624 |
| 6 | Apron | 1 | 1.60 | 1.00 | 0.10 | 0.160 |
| 7 | Wing wall | 2 | 0.80 | 0.15 | 0.312 |  |
|  | Total |  |  |  | $2.164 c u m$ |  |

## 4. Brick masonry

| S. No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut of wall | 1 | 5.20 | 0.60 | $0 . .60$ | 1.8725 |
| 2 | Head wall | 1 | 1.00 | 1.00 | 0.90 | 0.900 |
|  |  | 1 | 1.00 | $(0.40+1.00) / 2$ | 1.00 | 0.700 |
| 3 | Side wall | 2 | 1.70 | 1.00 | 0.45 | 1.530 |
|  |  | 2 | 1.70 | 0.80 | 0.45 | 0.918 |
|  |  | 2 | 1.70 | 0.80 | 0.60 | 1.020 |
|  |  | 2 | 1.70 | 0.60 | 0.40 | 0.544 |
|  |  | 2 | $(1.70+0.45) / 2$ | 0.40 | 0.50 | 0.430 |
| 4 | Head wall extension | 2 | 2.10 | 0.80 | 0.65 | 2.184 |
|  |  | 2 | 2.10 | 0.60 | 0.45 | 1.134 |
|  |  | 2 | 2.10 | 0.40 | 1.30 | 2.184 |
| 5 | Wing wall | 2 | 1.30 | 0.80 | 0.45 | 0.936 |
|  |  | 2 | 1.30 | 0.60 | 0.45 | 0.702 |
|  |  | 2 | 1.30 | 0.40 | $(1.00+0) / 2$ | 0.520 |
| 6 | Toe wall | 1 | 1.00 | 0.80 | 0.45 | 0.360 |
|  |  | 1 | 1.00 | 0.60 | 0.45 | 0.270 |
| 7 | Apron | 1 | 1.70 | 1.00 | 0.45 | 0.765 |
| 8 | Longitudinal sill | 2 | 1.70 | 0.20 | 0.20 | 0.136 |
| 9 | Transverse sill | 2 | 1.00 | 0.20 | 0.20 | 0.0440 |
| Total |  |  |  |  |  | 17.145 cum |

5. C.C.W. 1;2;4 on the wall and Apron

| S. <br> No. | Description of work | No. | L | B | D/H | Quantity |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Hide wall | 1 | 1.00 | 0.40 | 0.025 | 0.010 |
| 2 | Side wall | 2 | 0.45 | 0.40 | 0.025 | 0.009 |
|  |  | 2 | 1.35 | 0.40 | 0.025 | 0.027 |
| 3 | Head wall extension | 2 | 2.10 | 0.40 | 0.025 | 0.042 |
| 4 | Wing wall | 2 | 1.60 | 0.40 | 0.025 | 0.032 |
| 5 | Longitudinal | 2 | 1.70 | 0.20 | 0.025 | 0.017 |
| 6 | Transverse sill | 1 | 1.00 | 0.20 | 0.025 | 0.005 |
| 7 | Apron | 3 | 1.60 | 02. | 0.025 | 0.024 |
| Total |  |  |  |  |  |  |

## 6. Tuck Pointing 1:3

| S. No. | Description of work | No. | L | B | D/H | Quantity |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Side wall | 1 | 1.00 | - | 1.00 | 1.00 |
|  |  | 1 | 1.00 | - | 1.165 | 1.16 |
| 2 | Side wall | 2 | 0.45 | - | $(1.50+1.00) / 2$ | 3.12 |
|  |  | 2 | 1.25 | - | $(1.00+0) / 2$ | 1.30 |
| 3. | Wing wall | 2 | 2.30 | - | 1.00 | 4.20 |
| 4 | Head wall | 2.10 | - | $\mathbf{1 2 . 1 3 m}^{2}$ |  |  |
| Total |  |  |  |  |  |  |

CONSUMPTION OF MATERIALS

| S. <br> No. | Particulars | Quantity | Cement(Bags) | Sand(cum) | Brick (N0) | G.S.Git 25- <br> 40mm(cum) | Grit 10-20 <br> mm(cum) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Sand laying | 1.580 cum | - | 1.580 | - | - | - |
| 2 | C.C.W. 1:3:6 | 2.164 cum | 9.95 | 0.973 | - | 1.947 | - |
| 3 | Brick masonry | $17.145 c u m$ | 41.14 | 5.829 | 8755 | - | - |
| 4 | C.C.W 1:2:4 | 0.166 cum | 1.01 | 0.069 | - | - | 0.141 |
| 5 | Tuck Pointing | $12.13 \mathrm{~m}^{2}$ | 0.55 | 0.057 | - | - | - |
|  | Total |  | $\mathbf{2 5 . 6 5}$ | $\mathbf{8 . 5 0 8}$ | $\mathbf{8 7 5 5}$ | $\mathbf{1 . 9 4 7}$ | $\mathbf{0 . 1 4 1}$ |
|  | Say | $\mathbf{5 3 ~ B a g s}$ | $\mathbf{8 . 5 1} \mathbf{c u m}$ | $\mathbf{8 7 5 5}$ | $\mathbf{1 . 9 5 c u m}$ | $\mathbf{0 . 1 4}$ cum |  |

COST OF MATERILS

| S.No. | Name of materials | Quantity | Rate | Amount |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Cement | 53 ?Bags | 255.00 | 13515.00 |
| 2 | Course sand | 8.51 cum | 910.00 | 7744.10 |
| 3 | Brick | 8755 | $4500 /$ th | 39397.50 |
| 4 | G.S.B. $25-40 \mathrm{~mm}$ | 1.95 cum | 855.00 | 1667.25 |
| 5 | G.S.Grit $10-20$ | 0.14 cum | 1250.00 | 175.00 |
|  |  | Total |  | Rs.62498.85 |

## LABOUR CHARHGE

| S.No. | Particulars | Quantity | Rate | Amount |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Earth work | 15.60 cum | $36.66 / \mathrm{cum}$ | 57189 |
| 2 | Sand Laying | 1.580 cum | $33.33 / \mathrm{cum}$ | 52.66 |
| 3 | C.C.W 1:3:6: | 2.164 cum | $494 / \mathrm{cum}$ | 1.69 .0. |
| 4 | C.C.W. 1:2:4: | 0.166 cum | $494 / \mathrm{cum}$ | 82.00 |
| 5 | Brick Masonry | 17.145 cum | $400 / \mathrm{cum}$ | 6858.00 |
| 6 | Truck Pointing | $12.13 \mathrm{~m}^{2}$ | $51.61 / \mathrm{m}^{2}$ | 626.02 |
| 7 | Curing | 170145 cum | $25.00 / \mathrm{cum}$ | 428.62 |
| 8 | Chowkidar | 65 Man Days | $100.00 / \mathrm{Man}$ Day | 600.00 |
| 9 | Head Load \& local transporation $10 \%$ cost of materials |  |  | 4068.00 |
|  |  |  | Total | Rs.14356.20 |


| Total Expenditure |  |
| :--- | :--- |
| 1. Cost of Materials | 62498.85 |
| 2. Labour Charges | 14356.20 |
| Total | Rs. 76855.05 |
|  | Say Rs.76900.00 |

Design of Drop Spillway to be constructed at a place in a gully having width of 1.0 m and Catchments area 1.00 and net drop 0.50 m Taking rainfall intensity for duration equal to time of concentration of watershed and design return period of 25 years, as 120 $\mathrm{mm} / \mathrm{hr}$. The coefficient of runoff for the watershed is 0.3 .
1.Hydrologic design - The design peak runoff rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ for the watershed form Rational formula is given as :

$$
\mathrm{Q}=\frac{\text { C.I.A. }}{360}=\frac{0.3 \times 120 \times 20.0}{360}=2.00 \mathrm{~m}^{3} / \mathrm{s}
$$

2. Hydraulic design- The maximum discharge capacity of the rectangular weir given by

$$
\mathrm{Q}=\frac{1.711 \mathrm{LH}^{3 / 2}}{(1.1+0.01 \mathrm{~F})=}=
$$

To find suitable value of L\&H
Let us assume $\quad \mathrm{L} \quad=2.0 \mathrm{~m}$ (since width of gully is 3.00 m )

$$
2.00=\frac{1.711 \mathrm{LH}^{3 / 2}}{(1.1+0 . .01 \times 0.5)}=\frac{1.711 \mathrm{~L} \mathrm{H}^{3 / 2}}{(1.10+1.15)}
$$

$$
\mathrm{L} \mathrm{H}^{3 / 2}=\frac{2.0 \times 1.115}{1711}=0.350
$$

$$
\mathrm{H}^{3 / 2}=\underline{2.23}=0.65
$$

$$
\mathrm{u}-(0 \operatorname{c5})^{3 / 2} \overline{1.711 \times 4}
$$

$$
\mathrm{H}=(0.65)^{3 / 2}=0.75 \mathrm{~m}
$$

Test $\mathrm{L} / \mathrm{h}=2.00=2.66 \geq 2.0$ hence O.K.;

$$
\mathrm{h} / \mathrm{f}=\frac{\underline{0.25}}{\frac{0.75}{1.50}}=\leq 0.5 \text { hence O.K. }
$$

Heace he designed hydraulic dimensions of the Spilay are :
Crest Length ( L ) $=2.00 \mathrm{~m}$
Weir depth (h) $=0.81 \mathrm{~m}$

## 3. Structural design -

1. Minimum headwall extension, $\quad E=(3 h+0.6)$ or 1.5 f whichever is greater

$$
\begin{array}{ll}
\mathrm{E}=3 \times 0.81+0.6 \text { or } 1.5 \times 1.50 \\
\mathrm{E}=3.03 \mathrm{~m} & \text { or } 2.25 \mathrm{~m} \\
\text { Adopted }=3.03 \mathrm{~m} &
\end{array}
$$

2. Length of apron basin $L_{B}=(2.28 \mathrm{~h} / \mathrm{f}+0.54)=1.5(2.28 \times 0.08+0.54)$

$$
=1.50(1.20+0.54)=2.61 \mathrm{~m}
$$

3. Height of end sill, $\mathrm{S}=\underline{\mathrm{h}}=\underline{0.50}=0.16 \mathrm{~m}$
4. Height of wing wall and side wall at Junction:

$$
\begin{aligned}
\mathrm{J} & =2 \mathrm{~h} \text { or }\left[\mathrm{f}+\mathrm{h}+\mathrm{S}-\left(\mathrm{L}_{\mathrm{B}}+0.10\right) / 2\right] \text { whichever is greater } \\
& =2 \times 0.80 \text { or }[1.50+0.81+0.27-(2.61+0.10 / 2] \\
& =1.0 \text { or }[1.66-0.89]=1.00 \text { or } 0.77(\text { adopt } \mathrm{J}=1.00 \mathrm{~m})
\end{aligned}
$$

$$
\text { adopt } \mathrm{J}=1.62 \mathrm{~m}
$$

5. $\mathrm{M}=2(\mathrm{f}+1.33 \mathrm{~h}-\mathrm{J}) \quad=2(1.50+1.33 \times 0.81-1.62)=1.90 \mathrm{~m}$
6. $K=\left(L_{B}+0.1\right)-M=(2.61+0.1)-190=0.81 m$

Toe and cut off walls
Normal scour depth (N S D ) $=0.473 \times(\mathrm{Q} / \mathrm{f})^{1 / 3}=0.473 \times(2 / 1)^{1 / 3}=0.473 \times 1.259=0.595 \mathrm{~m}$
Maximum Scour depth (M S D ) $=1.5 \times \mathrm{N}$ S D $=1.5 \times 0.595=0.89 \mathrm{~m}$
Depth of cutoff / Toe wall 0.89 m say 0.60 m
Apron thickness : For an over fall of 1.0 m . The apron thickness in concrete construction is 0.30 m since structure is constructed in masonry ,the Apron thickness will be $0.30 \times 1.50=0.45 \mathrm{~m}$

Wall thickness : The thickness of wall of the structure ( masonry construction) is given below . :

| Description | Thickness of wall |  |
| :--- | :---: | :---: |
|  | T op width | Bottom width |
| Head wall | 0.45 | 1.33 |
| Side wall | 0.30 | 1.10 |
| Wing all and head wall extension | 0.30 | 0.80 |

DETAIL ESTIMATE OF DROP SPILLWAY OF CREST LENGTH 2.00 METRE

1. Earth work in cutting in foundation

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Side wall | 2 | 2.65 | 1.30 | 1.15 | 7.92 |
| 2 | Head wall | 1 | 2.00 | 1.60 | 1.15 | 3.68 |
| 3 | Head wall extension | 2 | 3.05 | 1.00 | 1.15 | 7.01 |
| 4 | Wing wall | 2 | 1.95 | 1.00 | 1.15 | 4.48 |
| 5 | Tow wall | 1 | 2.00 | 1.00 | 1.15 | 2.30 |
| 6 | Cut off wall | 1 | 8.40 | 1.00 | 1.15 | 9.66 |
| 7 | Apron | 1 | 2.60 | 2.00 | 0.75 | 3.90 |


| 2 Laying of sand in the bed of foundation |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.No. | Description of work | No. | L | B | D/H | Quantity |
| 1 | Cut of wall | 2 | 8.10 | 0.90 | 0.10 | 0.729 |
| 2 | Side wall | 1 | 2.65 | 1.20 | 0.10 | 0.636 |
| 3 | Head wall l | 2 | 2.00 | 0.70 | 0.10 | 0.140 |
| 4 | Head wall extension | 2 | 3.05 | 0.10 | 0.10 | 0.061 |
| 5 | Wing wall | 1 | 1.95 | 0.90 | 0.10 | 0.351 |
| 6 | Toe wall | 1 | 2.00 | 0.90 | 0.10 | 0.180 |
| 7 | Apron | 1 | 2.00 | 2.65 | 0.10 | 0.530 |
| Total |  |  |  |  |  | 2.627 cum |

3 C.C.W. 1 :3: 6 in foundation

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut off wall | 1 | 8.10 | 0.90 | 0.15 | 1.093 |
| 2 | Side wall | 2 | 2.65 | 1.20 | 0.15 | 0.954 |
| 3 | Head wall | 1 | 2.00 | 0.70 | 0.15 | 0.210 |
| 4 | Head wall extension | 2 | 3.05 | 0.10 | 0.15 | 0.091 |
| 5 | Wing wall | 2 | 1.95 | 0.90 | 0.15 | 0.526 |
| 6 | Tow wall | 1 | 2.00 | 0.90 | 0.15 | 0.270 |
| 7 | Apron | 1 | 2.00 | 2.65 | 0.15 | 0.795 |
| Total |  |  |  |  |  | 3.939 cum |

4 Brick masonry 1:4

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut off wall | 1 | 8.10 | 0.90 | 0.90 | 6.561 |
| 2 | Head wall | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 2.00 \\ & 2.00 \\ & 2.00 \end{aligned}$ | $\begin{gathered} 1.60 \\ 1.50 \\ (0.45+1.40) / 2 \end{gathered}$ | $\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.440 \\ & 1.350 \\ & 0.527 \end{aligned}$ |
| 3 | Head wall extension | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.30 \\ & 3.30 \\ & 3.30 \\ & 3.30 \\ & 3.30 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.90 \\ & 0.80 \\ & 0.60 \\ & 0.50 \\ & 0.40 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.60 \\ & 0.60 \\ & 1.15 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.673 \\ & 2.376 \\ & 2.376 \\ & 1.980 \\ & 3.036 \\ & \hline \end{aligned}$ |
| 4 | Side wall | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | 2.65 2.65 2.65 2.65 2.65 $(0.80+2.65) / 2$ | $\begin{aligned} & 1.10 \\ & 1.10 \\ & 1.10 \\ & 0.80 \\ & 0.60 \\ & 0.50 \end{aligned}$ | 0.90 0.45 0.65 0.60 0.45 0.70 | 5.247 2.623 3.789 2.544 1.431 1.260 |
| 5 | Wing wall | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.90 \\ & 1.90 \\ & 1.90 \end{aligned}$ | $\begin{aligned} & \hline 0.90 \\ & 0.80 \\ & 0.60 \end{aligned}$ | 0.45 0.45 $(1.65+0) / 2$ | $\begin{aligned} & 1.539 \\ & 1.368 \\ & 1.881 \end{aligned}$ |
| 6 | Tow wall | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 2.00 \\ & 2.00 \\ & 2.00 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 0.810 \\ & 0.720 \\ & 0.240 \end{aligned}$ |
| 7 | Longitudinal sill | 2 | 2.65 | 0.20 | 0.30 | 0.318 |
| 8 | Apron | 2 | 2.65 | 2.00 | 0.45 | 4.770 |
| Total |  |  |  |  |  | 6 cum |

## 5. C.C.W. 1:2:4 in the wall

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :--- | :---: | :---: | :--- | :--- | :---: |
| 1 | Head wall | 1 | 2.00 | 0.45 | 0.025 | 0.0225 |
| 2 | Side wall | 2 | 0.80 | 0.50 | 0.025 | 0.330 |
| 3 |  | Head wall extension | 2 | 1.32 | 0.50 | 0.025 |
| 4 | Wing wall | 2 | 3.02 | 0.40 | 0.025 | 0.610 |
| 5 | Longitudinal sill | 2 | 2.52 | 0.60 | 0.025 | 0.265 |
| 6 | Apron | 1 | 2.65 | 0.20 | 0.025 | 0.3 |
| 6 | Toe Wall | 1 | 2.05 | $1.60 / 3$ | 0.025 | 0. |

6. Tuck Pointing 1:3

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Head wall | 1 | 2.00 | - | 0.85 | 1.27 |
| 2 |  | 1 | 2.00 | - | 1.65 |  |
| 2 | Side wall | 1 | 2.65 | - | 0.70 | 4.37 |
| 3 | Head wall extension | 2 | 3.30 | - | 1.50 | 1.20 |
| 4 | Wing wall | 2 | 1.90 | - | $(1.665+0) / 2$ | Total |


| S.No. | Particulars | Quantity | Cement (Bags) | Coarse Sand (cum) | Brick (No.) | $\begin{aligned} & \text { G.S.B. } 25-40 \\ & \text { mm (cum) } \end{aligned}$ | $\begin{aligned} & \text { G.S. Grit } 10-20 \\ & \text { mm } \\ & \text { (cum) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sand laying | 2.627 cum | - | 2.227 | - | - | - |
| 2 | C.C.W. 1:3:6 | 3.939 cum | 16.93 | 1.772 | - | 3.545 | - |
| 3 | Brick Masonry | 51.806 cum | 124.33 | 17.614 | 25903 | - | - |
| 4 | C.C.W. 1:2:4 | 0.294 cum | 1.79 | 0.123 | - | - | 0.249 |
| 5 | Tuck Pointing 1:3 | $22.84 \mathrm{~m}^{2}$ | 1.50 | 0.107 | - | - | - |
|  | Total |  | 144.10 | 22.243 | 25903 | 3.545 | 0.249 |
|  | Say |  | 144 Bags | 22.243 cum | 25903 | 3.55 cum | 0.250 cum |

Cost of Materials

| S.No. | Name of Materials | Quantity | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Cement | 144 Bags | 255.00/bag | 36720.00 |
| 2 | Coarse sand | 22.243 cum | 910.00/cum | 20241.13 |
| 3 | Brick | 25903 | 4500.00/th | 115663.50 |
| 4 | G.S.B. $25-40 \mathrm{~mm}$ | 3.55 cum | 855.00/cum | 3035.25 |
| 5 | G.S. Grit 10-20 mm | 0.250 cum | 1250.00/cum | 312.50 |
|  | Total |  |  | Rs.176872.38 |

## LABOUR CHARGE



Design of Drop Spillway to be constructed at a place in a gully having width of 1.0 m and Catchments area 1.00 and net drop 0.50 m Taking rainfall intensity for duration equal to time of concentration of watershed and design return period of 25 years , as 120 $\mathrm{mm} / \mathrm{hr}$. The coefficient of runoff for the watershed is 0.3 .
1.Hydrologic design - The design peak runoff rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ for the watershed form Rational formula is given as :

$$
\mathrm{Q}=\quad \frac{\text { C.I.A. }}{360}=\frac{0.3 \times 120 \times 20.0}{360}=2.00 \mathrm{~m}^{3} / \mathrm{s}
$$

2. Hydraulic design- The maximum discharge capacity of the rectangular weir given by

$$
\mathrm{Q}=\frac{1.711 \mathrm{LH}^{3 / 2}}{(1.1+0.01 \mathrm{~F})}=
$$

To find suitable value of $\mathrm{L} \& \mathrm{H}$
Let us assume $\quad \mathrm{L} \quad=2.0 \mathrm{~m}$ (since width of gully is 3.00 m )

| $2.00=\frac{1.711 \mathrm{LH}^{3 / 2}}{(1.1+0.01 \times 0.5)}$ | $\frac{1.711 \mathrm{~L} \mathrm{H}^{3 / 2}}{(1.10+1.15)}$ |
| :---: | :---: |
| $\mathrm{L} \mathrm{H}^{3 / 2}=\underline{2.0 \times 1.115}=$ | 0.350 |

$$
\mathrm{LH}^{3 / 2}=\frac{2.0 \times 1.115}{1711}=0.350
$$

$$
\mathrm{H}^{3 / 2}=\stackrel{1 . / 11}{2.23}=0.65
$$

$$
\mathrm{H}=(0.65)^{3 / 2} \stackrel{\overline{1.711 \mathrm{x} 4}}{=0.75 \mathrm{~m}}
$$

Test

$$
\begin{aligned}
& \mathrm{L} / \mathrm{h}=2.00=2.66 \geq 2.0 \text { hence O.K.; } \\
& \mathrm{h} / \mathrm{f}=\frac{\underline{0.25}}{\underline{0.75}}=\leq 0.5 \text { hence O.K. }
\end{aligned}
$$

Heace he designed hydraulic dimensions of the Spilay are :
Crest Length ( L ) $=2.00 \mathrm{~m}$
Weir depth (h) $=0.81 \mathrm{~m}$

## 3. Structural design -

1. Minimum headwall extension, $E=(3 h+0.6)$ or 1.5 f whichever is greater

$$
\begin{aligned}
& \mathrm{E}=3 \mathrm{x} 0.81+0.6 \text { or } 1.5 \times 1.50 \\
& \mathrm{E}=3.03 \mathrm{~m} \\
& \text { or } 2.25 \mathrm{~m}
\end{aligned}
$$

$$
\text { Adopted }=3.03 \mathrm{~m}
$$

2. Length of apron basin $L_{B}=(2.28 \mathrm{~h} / \mathrm{f}+0.54)=1.5(2.28 \times 0.08+0.54)$

$$
=1.50(1.20+0.54)=2.61 \mathrm{~m}
$$

3. Height of end sill, $\mathrm{S}=\underline{\mathrm{h}}=\underline{0.50}=0.16 \mathrm{~m}$
4. Height of wing wall and side wall at Junction:

$$
\begin{aligned}
\mathrm{J} & =2 \mathrm{~h} \text { or }\left[\mathrm{f}+\mathrm{h}+\mathrm{S}-\left(\mathrm{L}_{\mathrm{B}}+0.10\right) / 2\right] \text { whichever is greater } \\
& =2 \times 0.80 \text { or }[1.50+0.81+0.27-(2.61+0.10 / 2] \\
& =1.0 \text { or }[1.66-0.89]=1.00 \text { or } 0.77(\text { adopt } \mathrm{J}=1.00 \mathrm{~m})
\end{aligned}
$$

$$
\text { adopt } \mathrm{J}=1.62 \mathrm{~m}
$$

5. $\mathrm{M}=2(\mathrm{f}+1.33 \mathrm{~h}-\mathrm{J}) \quad=2(1.50+1.33 \times 0.81-1.62)=1.90 \mathrm{~m}$
6. $K=\left(L_{B}+0.1\right)-M=(2.61+0.1)-190=0.81 m$

Toe and cut off walls
Normal scour depth (N S D ) $=0.473 \mathrm{x}(\mathrm{Q} / \mathrm{f})^{1 / 3}=0.473 \times(2 / 1)^{1 / 3}=0.473 \times 1.259=0.595 \mathrm{~m}$
Maximum Scour depth (M S D ) $=1.5 \times \mathrm{N}$ S D $=1.5 \times 0.595=0.89 \mathrm{~m}$
Depth of cutoff / Toe wall 0.89 m say 0.60 m
Apron thickness : For an over fall of 1.0 m . The apron thickness in concrete construction is 0.30 m since structure is constructed in masonry ,the Apron thickness will be $0.30 \times 1.50=0.45 \mathrm{~m}$

Wall thickness : The thickness of wall of the structure ( masonry construction ) is given below .:

| Description | Thickness of wall |  |
| :--- | :---: | :---: |
|  | T op width | Bottom width |
| Head wall | 0.45 | 1.33 |
| Side wall | 0.30 | 1.10 |
| Wing all and head wall extension | 0.30 | 0.80 |

DETAIL ESTIMATE OF DROP SPILLWAY OF CREST LENGTH 2.00 METRE
2. Earth work in cutting in foundation

| S.No. | Description of work | No. | $\mathbf{L}$ | $\mathbf{B}$ | D/H | Quantity |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Side wall | 2 | 3.40 | 1.30 | 1.15 | 9.38 |
| 2 | Head wall | 1 | 3.00 | 1.60 | 1.15 |  |
| 3 | Head wall extension | 2 | 3.00 | 1.00 | 1.15 | 6.52 |
| 4 | Wing wall | 2 | 1.80 | 1.00 | 1.15 | 4.96 |
| 5 | Tow wall | 1 | 3.00 | 1.00 | 1.15 |  |
| 6 | Cut off wall | 1 | 9.00 | 1.00 | 1.15 |  |
| 7 | Apron | 1 | 3.00 | 0.75 |  |  |

2 Laying of sand in the bed of foundation

| S.No. | Description of work | No. | $\mathbf{L}$ | $\mathbf{B}$ | $\mathbf{D} / \mathbf{H}$ |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut of wall | 2 | 3.40 | 0.90 | 0.10 | 0.10 |
| 2 | Head wall l | 2 | 3.00 | 0.70 | 0.10 |  |
| 3 | Head wall extension | 2 | 1.80 | 0.10 | 0.180 |  |
| 4 | Wing wall | 1 | 3.00 | 0.90 | 0.10 |  |
| 5 | Toe wall | 1 | 9.00 | 0.90 | 0.10 |  |
| 6 | Apron | 1 | 3.00 | 0.60 |  |  |

3 C.C.W. 1:3: 6 in foundation

| S.No. | Description of work | No. | $\mathbf{L}$ | $\mathbf{B}$ | $\mathbf{D}$ | Quantity |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut off wall | 1 | 9.00 | 0.90 | 0.15 | 1.35 |
| 2 | Head wall | 1 | 3.00 | 0.70 | 0.15 | 0.27 |
| 3 | Head wall extension | 2 | 3.40 | 0.10 | 0.15 | 0.15 |
| 4 | Wing wall | 2 | 1.80 | 0.90 | 0.54 |  |
| 5 | Tow wall | 1 | 3.00 | 0.90 | 0.15 | 0.36 |
| 6 | Apron | 1 | 3.00 | 2.65 | 0.15 | 1.192 |
| Total |  |  |  |  |  |  |

4. Brick masonry

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cut off wall | 1 | 9.00 | 1.00 | 0.90 | 8.100 |
| 2 | Head wall | 1 | 3.00 | 1.50 | 0.90 | 4.050 |
|  |  | 1 | 3.00 | (1.50+0.50)/2 | 1.50 | 4.500 |
| 3 | Head wall extension | 2 | 3.00 | 0.80 | 0.45 | 2.160 |
|  |  | 2 | 3.00 | 0.60 | 0.45 | 1.620 |
|  |  | 2 | 3.00 | 0.60 | 0.60 | 2.160 |
|  |  | 2 | 3.00 | 0.50 | 0.60 | 1.800 |
|  |  | 2 | 3.00 | 0.40 | 1.30 | 2.120 |
| 4 | Side wall | 2 | 3.40 | 1.00 | 0.45 | 3.060 |
|  |  | 2 | 3.60 | 0.80 | 0.45 | 2.592 |
|  |  | 2 | 3.80 | 0.60 | 0.60 | 2.736 |
|  |  | 2 | 3.90 | 0.50 | 1.00 | 3.900 |
|  |  | 2 | $(4.00+1.40) / 2$ | 0.40 | 1.50 | 3.240 |
| 5 | Wing wall | 2 | 1.80 | 1.00 | 0.45 | 1.620 |
|  |  | 2 | 1.80 | 0.80 | 0.45 | 1.296 |
|  |  | 2 | 1.80 | 0.50 | $(1.60+0) / 2$ | 1.440 |
| 6 | Toe wall | 1 | 3.00 | 0.80 | 0.45 | 1.080 |
|  |  | 1 | 3.00 | 0.60 | 0.45 | 0.810 |
|  |  | 1 | 3.00 | 0.40 | 0.30 | 0.360 |
| 7 | Apron | 1 | 3.00 | 2.65 | 0.45 | 0.577 |
| 8 | Longitudinal sill | 2 | 2.60 | 2.20 | 0.45 | 0.486 |
| Total |  |  |  |  |  | 53.689 cum |

5. C.C.W. 1:2:4 in the wall

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Head wall | 1 | 3.00 | 0.50 | 0.025 | 0.037 |
| 2 | Side wall | 2 | 1.40 | 0.40 | 0.025 | 0.028 |
|  |  | 2 | 3.00 | 0.40 | 0.025 | 0.060 |
| 3 | Head wall extension | 2 | 3.00 | 0.40 | 0.025 | 0.060 |
| 4 | Wing wall | 2 | 2.40 | 0.50 | 0.025 | 0.060 |
| 5 | Longitudinal sill | 2 | 2.65 | 0.20 | 0.025 | 0.026 |
| 6 | Apron | 3 | 2.65 | 0.86 | 0.025 | 0.170 |
|  |  |  |  |  | Total | 0.441cum |

6. Tuck Pointing 1:3

| S.No. | Description of work | No. | L | B | D/H | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Head wall | 1 | 3.00 | - | 1.00 | 4.56 |
|  |  | 1 | 3.00 | - | 1.18 | 5.40 |
| 2 | Side wall | 2 | 3.40 | - | 1.60 | 10.88 |
|  |  | 2 | $(1.40+3.40) / 2$ | - | 1.50 | 7.20 |
| 3 | Head wall extension | 2 | 3.00 | - | 1.50 | 9.00 |
| 4 | Wing wall | 2 | 1.80 | - | $(1.60+0) / 2$ | 2.88 |
|  |  |  |  |  | Total | $39.86 \mathrm{~m}^{2}$ |

CONSUMPTAION OF MATERIALS

| S.No. | Particulars | Quantity | Cement (Bags) | Coarse Sand (cum) | Brick (No.) | $\begin{aligned} & \text { G.S.B. 25-40 mm } \\ & \text { (cum) } \end{aligned}$ | $\begin{gathered} \text { G.S. Grit 10-20 } \\ \text { mm } \\ \text { (cum) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sand laying | 3.155 cum | - | 3.155 | - | - | - |
| 2 | C.C.W. 1:3:6 | 4.732 cum | 2.34 | 2.129 | - | 4.258 | - |
| 3 | C.C.W. 1:2:4 | 0.441 cum | 2.69 | 0.185 | 26845 | - | - |
| 4 | B/W 1:4 | 53.689 cum | 128.85 | 18.254 | - | - | 0.374 |
| 5 | Raised Pointing | $39.86 \mathrm{~m}^{2}$ | 1.83 | 0.187 | - | - | - |
|  | Total |  | 153.71 | 23.910 | 26845 | 4.258 | 0.374 |
|  | Say |  | 154 | 23.910 | 26845 | 4.26 | 0.374 |

## Cost of Materials

| S.No. | Name of Materials | Rate | Amount |  |
| :---: | :--- | :--- | :--- | :--- |
| 1 | Cement | 154 Bags | $255.00 / \mathrm{bag}$ | 39270.00 |
| 2 | Coarse sand | 23.91 cum | $910.00 / \mathrm{cum}$ | 21758.10 |
| 3 | Brick | 26845 | $4500.00 / \mathrm{th}$ | 129802.00 |
| 4 | G.S.B. $25-40 \mathrm{~mm}$ | 4.26 cum | $855.00 / \mathrm{cum}$ | 3633.75 |
| 5 | G.S. Grit $10-20 \mathrm{~mm}$ | 0.374 cum | $1250.00 / \mathrm{cum}$ | 467.50 |
|  | Total |  |  |  |

## LABOUR CHARGE

| S.No. | Particulars | Quantity | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Earth Work | 46.12 cum | 36.66/cum | 1690.75 |
| 2 | Sand Laying | 3.155 cum | 33.33/cum | 105.15 |
| 3 | C.C.W. 1:3:6 | 4.732 cum | 494/cum | 2337.60 |
| 4 | C.C.W. 1:2:4 | 1.441 cum | 494/cum | 217.85 |
| 5 | B/W 1:4 | 53.689 cum | 400/cum | 21475.60 |
| 6 | Tuck Pointing | $39.86 \mathrm{~m}^{2}$ | 51.61/m ${ }^{2}$ | 2057.17 |
| 7 | Curing | 53.689 cum | 25.00/cum | 1342.22 |
| 8 | Chowkidar | 13 Man days | 100.00/Man day | 1300.00 |
| 9 | Head Load \& local taion cost $10 \%$ cost of material | - | - | 12015.12 |
| Total |  |  |  | Rs. 425441.34 |


| Total Expenditure |  |  |
| :--- | :---: | :---: |
| 1 -Cost of Materials | 192931.35 |  |
| 2 Labour Charges | Total |  |
|  | 42541.34 |  |
|  | Rs. 235472.69 |  |

## 11- DRAWING AND DETAILS ESTIMATE OF THE LIVELIHOOD PROGRAMME

DRAWING OF NADEF COMPOST STRUCTURE

(Not to Scale)

## PERPARATION OF COMPOST BY NANDEP METHOD

NADEP is the name of the method in this method glazed pit of brick masonry above Ground level is made as shown in the drying. in this method by using a little quantity of cow during, and crop residue, leaf of trees, straw and other organic materials. The method of filling up the pit is - first of all best soil of pond or field is spread in the bottom of pit as least 3 " thickness and then one layer of 6 " thickness and other agriculture waste is made then best soil is spread on in and on this layer the liquid made of cow dung is spread to wet the crop residue, straw etc. this method is repeated unit the pit is net completely filled up. On the top layer of this material a bulk is made and then pit is closed by earthen gara water is spread on the top of bulk and from glazed side weekly. This process is repeated to moist the filling material always. The decomposition in filling material started and within six month filled material become compost khad.

| S.No. | Description of work | No. | L. | B. | D./H. | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Earth work |  |  |  |  |  |
|  | Long Wall | 2 | 3.60 | 0.30 | 0.30 | 0.648 |
|  | Short Wall | 2 | 2.33 | 0.30 | 0.30 | 0.419 |
|  | Total |  |  |  |  | 1.067 cum |
| 2. | Brick work 1:4 |  |  |  |  |  |
|  | Long wall solid | 2 | 3.46 | 0.23 | 0.90 | 1.432 |
|  | Short Wall Solid | 2 | 2.40 | 0.23 | 0.90 | 0.993 |
|  | Total |  |  |  |  | 2.425 cum |
| 3. | Plastering Work |  |  |  |  |  |
|  | Long Wall | 2 | 3.46 | - | 0.60 | 4.152 |
|  | Short Wall | 2 | 2.40 | - | 0.60 | 2.880 |
|  | Top of Long Wall | 2 | 3.46 | 0.23 | - | 1.591 |
|  | Top of Short Wall | 2 | 2.40 | 0.23 | - | 1.104 |
|  | Total |  |  |  |  | $9.727 \mathrm{~m}^{2}$ |

## ABSTRACT OF WORK

| S.N. | Particulars | Quantity |
| :---: | :---: | :---: |
| 1. | Earth Work | 1.06 com |
| 2. | Brick Work $1: 42.425+1.616 / 2$ | 3.233 cum |
| 3. | Plastering $1: 4$ | $9.727 \mathrm{~m}^{2}$ |

## CONSUMPTION OF MATERIALS

| S.NO. | Particulars | Quantity | Cement <br> (Bags) | Coarse Sand (cum) | Brick (nos.) |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 1. | Brick work 1:4 | 3.233 cum | 5.82 | 0.873 | 1487 |
| 2. | Plastering $1: 4$ | $9.727 \mathrm{~m}^{2}$ | 1.07 | 0.146 | - |
|  | Total | 6.89 | 1.019 | 1487 |  |
|  | Say | 7 Bags | 1.02 cum | 1500 nos. |  |

COST OF MATERIALS

| S.NO. | Particulars | Quantity | Rate | Amount |
| :---: | :--- | :---: | :---: | :---: |
| 1. | Cement | 7 Bags | $255.00 /$ Bag | 1785.00 |
| 2. | Coarse Sand | 1.02 cum | $910.00 /$ cum | 928.20 |
| 3. | 6 Class Brick work 1:4 | 1500 nos. | $4050.00 /$ <br> Thousand | 6075.00 |
|  | Total |  |  | Rs. 8,788.20 |

## LABOUR CHARGES

| S.NO. | Particulars | Quantity | Rate | Amount |
| :---: | :--- | :---: | :---: | :---: |
| 1. | Earth Work | 1.06 cum | $36.66 / \mathrm{cum}$ | 30.85 |
| 2. | Brick | 3.233 cum | $370.00 / \mathrm{cum}$ | 1196.21 |
| 3. | Plastering | $9.727 \mathrm{~m}^{2}$ | $40.00 / \mathrm{m}^{2}$ | 389.08 |
|  | Total |  |  |  |


|  | Total Expenditure |  |  |
| :--- | :--- | :--- | :--- |
| 1. Cost of Materials |  | $\mathbf{8 7 8 8 . 2 0}$ |  |
| 2. Labour Charges | Total | $\mathbf{1 6 1 6 . 1 4}$ |  |
|  |  | Rs.10,404.34 |  |
|  |  | Say Rs. 10,400.00 only |  |

## DAIRY WORK

In income generating activities through Self Help Group, landless and marginal farmers are advised to use three or four cows of SANKER breed or two or three buffalos of MURRA breed, for their good life.

## Establishment of Goat Unit for S.H.G.'s formed in I.W.M.P. III ${ }^{\text {rd }}$ Farrukhabad

## Project

District Farrukhabad III ${ }^{\text {rd }}$ is situated in eastern part of state, where the number of goat/sheep is very less and they are small in nature, Goat Population is appreciable and is fact, it is the major source of livelihood for poor people of the district. in the state , on an average, 16 kg of meat is obtained from a goat, if they are dewormmed twice, shall be increment of 4 kg in meat on an average, benefiting the farmers of the state.

Deworming and vitamins, mineral- supplement to the goats shall enhance their productivity and also improve anti-body response and protection level through vaccination, i.e., importance in efficiency of vaccination. More Productivity and assured health and low mortality shall result into adoption of more framers to goat farming with the formation of more S.H.G. 's and in turn availability of goats for processing unit. Goat excreta shall be of immense help in enrichment of soil fertility.

## Establishment of Goat Units for S.H.G.'s

Eastern region, due to the geo-climate conditions and land pattern is favorable for goat husbandry. Goats thrive Well in dry and semidry climate with bushes and thorny vegetation. Presently in this area, farmers rear goats for their livelihood. If goat husbandry would be transformed to intensive husbandry, there shall be more economic stability of farmers, more profit sharing and availability of running capital for future expansion. Kepping in view above fact, goat unit shall be formed in the area in intensive way.

16 Goat Unit are Proposed in I.W.M.P. III ${ }^{\text {rd }}$ Project for S.H.G. one unit constituting 10 goats and 1 buck will be distributed to one S.H.G. A register Of S.H.G. will be maintained by Secretary Of S.H.G. in the supervision of W.D.T. member . The details of benficiaries Of S.H.G. including the breed of goat reared, breeding and feeding status, deworming status, deaths, post mortem conducted claim settlement and working status of unit will be maintained in the register.

Preferences shall be given in consecutive years in purchasing the goats and bucks for new unit, from old units for which database maintained shall be of use and it should be assured by buy back arrangement

## Financial Component

| S.No. | Component | Amount |
| :---: | :--- | :---: |
| $\mathbf{1 .}$ | Cost Of 10 goat of improved breed (Not less than 6 months of age) @Rs. <br> 3000.00 each | $\mathbf{3 0 0 0 0 . 0 0}$ |
| $\mathbf{2}$ | Cost of 1 back of improved breed @ Rs.5000.00 | $\mathbf{5 0 0 0 . 0 0}$ |
| $\mathbf{3}$ | Cost of insurance @ 11.63/unit | $\mathbf{4 0 7 0 . 0 0}$ |
| $\mathbf{4}$ | Feed cost for 3 months @ 250gm/day for goats @Rs.11.84/250gm | $\mathbf{2 9 3 0 . 0 0}$ |
| $\mathbf{5}$ | Provision of deworming, mineral and vitamin supplement, treatment, <br> vaccination @ Rs/160/animal | $\mathbf{1 7 6 0 . 0 0}$ |
| $\mathbf{6}$ | The expense including monitoring expenses, register and record <br> @Rs.170.00/unit | $\mathbf{1 7 0 . 0 0}$ |
|  | Total | Rs. 43,930.40 |
|  | Say Rs. 43.950.00 |  |

## Estimate of Livestock Development Activities



# 12- DRWAING AND DETAILS ESTIMATE OF PRODUCTION SYSTEM AND MICROENTERPRISES DEMOSTRATION OF WHEAT 

1. Variety recommended for District
```
Irrigated - W.H.- }54
    Unirrigated - K 8027 , K - }5351\mathrm{ (Mandakini)
    Kathia - Raj }155
```

2- Seed rate - 100-125 Kg/ hectare
3- Requirement of fertilizers / ha $\quad \mathrm{N}-125 \mathrm{Kg}, \mathrm{P}-70-75 \mathrm{Kg}, \mathrm{K}-70-75 \mathrm{Kg}$
ESTIMATE OF DEMONSTRATION OF WHEAT IN EATERSHED (PER HA)
$\left.\begin{array}{|c|c|c|c|c|l|}\hline \text { S.No. } & \text { Particulars } & \text { Quantity } & \text { Rate } & \text { Amount } & \text { Remarks } \\ \hline 1 & \begin{array}{c}\text { Tillage operation or } \\ \text { preparation of field for sowing }\end{array} & 100.00 \mathrm{~kg} & 1000.0 / \mathrm{ha} & 1000.00 & \\ \hline 2 & \text { Cost of seed } & 1.00 \mathrm{ha} & 18.00 / \mathrm{kg} & 1800.00 & \begin{array}{l}\text { Since the project is } \\ \text { Sin } \\ \text { to be operated in a } \\ \text { participatory Mode, } \\ \text { contribution in form } \\ \text { of the tillage } \\ \text { sowing, irrigation } \\ \text { and harvesting done }\end{array} \\ \hline 3 & \text { Sowing by seed drill } & 160 \mathrm{Kg} & 1000.00 / \mathrm{ha} & 1000.00 & 1833.60 \\ \text { by farmer is not } \\ \text { included in the } \\ \text { estimates }\end{array}\right\}$

Hence demonstration cost of wheat /ha is Rss 5700.00

## DEMOSTRATION OF GRAM IN WATERSHED AREA (per ha)

```
1 Variety Irrigated - vdai , KWR - 108,
Rainfed - J.G. - 315 , Avrdhi
2- Seed rate /ha - \(50-55 \mathrm{Kg}\)
```

3- Fertilizers requirement / ha $\quad \mathrm{N}-25.0 \mathrm{Kg}$, P- $80 \mathrm{Kg}, \mathrm{K}-30 \mathrm{Kg}$
ESTIMATE OF DEMONSTRATION OF GRAM (PER HA)

| S.No. | Particulars | Quantity | Rate | Amount | Remarks |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | Tillage operation or <br> preparation of field for sowing | 1.0 ha (twice) | $1000.0 / \mathrm{ha}$ | 2000.00 |  |
| 2 | Cost of seed | 55 kg | $90 / \mathrm{kg}$ | 4950.00 |  |
| 3 | D.A.P. | 175 Kg | $573.00 / 50 \mathrm{~kg}$ | 2005.50 | Since the project is <br> to be operated in a <br> participatory Mode, <br> contribution by the <br> former in the form <br> of tillage ,sowing, <br> operation , sowing <br> and and harvesting <br> is not included in <br> the estimates |
| 4 | Medicine | 65 Kg | $300.00 / 50 \mathrm{~kg}$ | 390.00 | 1250.00 |

Hence per hectare of demonstration Rs $\mathbf{8 6 0 0 . 0 0}$

## DEMOSTRATION OF ARAHAR IN WATERSHED AREA (per ha)

1 Variety - Malviya -13 narendra -1 Amar I
2- Seed rate /ha -30 Kg
3- Fertilizers requirement / ha $\mathrm{N}-20.0 \mathrm{Kg}$, P-50Kg, K- 40 Kg
ESTIMATE OF DEMONSTRATION OF ARAHAR (PER ha)

| S.No. | Particulars | Quantity | Rate | Amount | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tillage operation in preparation of field for sowing | 1.0 ha | 1000.0/ha | 2000.00 | Since the project is to be operated in a participatory Mode, contribution by the former in the form of tillage operation, sowing and and harvesting provided by participating farmers ,hence this cost is not included in the estimates |
| 2 | Cost of seed | 30.0 kg | 120.00/kg | 3600.00 |  |
| 3 | Nitrogen N.P.K. 12:21:16 | 190.0 Kg | 470.00/50 kg | 1786.50 |  |
| 4 | Urea | - | - | - |  |
| 5 | M.O.P | - | - | - |  |
| 6 | Harvesting | 1.00 ha | 650.00 | 650.00 |  |
| 7 | Medicine | 1.00 ha | Lump sum | 1000.00 |  |
| Total |  |  |  | 6386.00 |  |
| Say |  |  |  | 6400.00 |  |

Hence per hectare of demonstration Rs $\mathbf{6 4 0 0 . 0 0}$

## DEMOSTRATION OF HYBRID SORGHUM IN WATERSHED AREA (per ha)

1 Requirement of Seed /ha - 10 kg I
2- Requirement of fertilizers / ha $\quad \mathrm{N}-60.0 \mathrm{Kg}, \mathrm{P}-40.00 \mathrm{Kg}, \mathrm{K}-40.00 \mathrm{Kg}$
ESTIMATE OF DEMONSTRATION OF BAJRA (PER ha) RAINFED

| S.No. | Particulars | Quantity | Rate | Amount | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tillage operation in preparation of field for sowing | 1.0 ha | 1000.0/ha | 2000.00 | Since the project is to be operated in a participatory Mode, contribution by the former in the form of tillage operation, sowing and and harvesting provided by participating farmers ,hence this cost is not included in the estimates |
| 2 | Cost of seed | 10.0 kg | 130.00/kg | 1300.00 |  |
| 3 | $\begin{gathered} \text { Nitrogen N.P.K. } \\ \text { 12:21:16 } \end{gathered}$ | 125.0 Kg | 470.00/50 kg | 1175.00 |  |
| 4 | Urea | 90 kg | $270.00 / 50 \mathrm{~kg}$ | 486.00 |  |
| 5 | M.O.P | 40 kg | $300.00 / 50 \mathrm{~kg}$ | 240.00 |  |
| 6 | Harvesting | 1.00 ha | 650.00 /ha | 600.00 |  |
| Total |  |  |  | 3201.00 |  |
| Say |  |  |  | 3200.00 |  |

Hence per hectare of demonstration of Bajra Rs $\mathbf{3 2 0 0 . 0 0}$

## DEMONSTRATION OF AGRO-HORTICULTURE USING PLASTIC DRUM OF 200 LITRES CAPACITY

District Farrukhabad is situated in Eastern U.P. region where there is scarcity of water and in summer temperature rises up to 45 c causing upper layer of fields dry and therefore mortality rate of plants is very high. Farmers usually like to grow grain crops only. They are not interested in horticulture because of less holding. The production of crops decreases below the tree. Therefore to promote horticulture with crops a demonstration model using plastic drums for horticulture is made. Mainly crops roots go in to the soil up to " $4-5$ " in cereal crops and " $6-9$ " in pulses. Using plastic drums the plants will be planted $50-60 \mathrm{~cm}$ below the ground level which is below the root zone of crops. Therefore trees will not able to take nutrients from upper layer of fields and there will no effect of plants on crops

In summer season up to 1 to 1.50 m depth of soil becomes dry causes more mortality rate of plants, using drums plants are planted below 50-60 from Ground level and in rainy and winter season up to February roots of plants goes below 2.1Om below where moisture will be available and plants will be safe in summer also. Using barbed wire fencing the plants will be protected. Therefore, it is hoped that farmers will adapt this procedure for Agro-forestry and will become prosperous.

DETAIL ESTIMATE OF DEMONSTRATION OF HORTICULTURE AND MIXED CROPPING

| S.No. | Description of Works | No. | L. | B. | D./H. | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Earth work in cutting | 156 | $3.14 \times 1.20$ | - | 1.35 | 793.54 |
|  | Trench | 156 | 1.50 | 0.75 | 0.75 | 131.62 |
|  | Fencing Poll | 133 | 0.20 | 0.20 | 0.20 | 1.064 |
|  | Total |  |  |  |  | 926.22 cum |
|  | Farm yard manure | 156x 10 |  | - |  | 1560 kg |
|  | Filling of earth work with farm yard manure | 156 | $3.14 \times 1.00$ | - | 1.20 | 587.80 cum |
|  | C.C.W. 1:2:4 for fencing poll | 133 | 0.20 | 0.20 | 0.20 | 1.064 cum |
|  | Angle iron of poll | 133 | 1.80 | - | - | 239.40 m |
|  | Barbed wire | 3 | 400 | - | - | 1200.00 m |
|  | Plants | 156 | - | - | - | 156 nos |
|  | Plastic drum (200 litre) | 156 | - | - | - | 156 nos |

CONSUMPTION OF MATERIAL

| S.N. | Description of <br> Work | Quantity | Farmyard <br> Manure <br> $(\mathrm{Kg}>$ | Cement <br> Bags (nos) | Coarse <br> Sand ( <br> cum) | G.S. Grit <br> $10-20 \mathrm{~mm}$ | Angle <br> Iron (m) | Barbed <br> Wire (Kg) | Planting <br> Drum <br> (nos) |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | C.C.W. 1:2:4 | 1.064 cum | - | 6.49 | - | - | - | - | - |
| 2 | Angle Iron | 239.4 m | - | - | - | - | - | - | - |
| 3 | Barbed wire | 1200.0 m | - | - | - | - | - | - | - |
| 4 | Farmyard <br> manure | 1560.0 kg | 1560 kg | - | - | - | - | - | - |
| 5 | Plastic drum | 156 nos | - | - | - | - | - | - | - |
| Total |  |  | 1560.0 kg | 6.49 | 0.446 | 0.883 | 239.40 | 1200.00 | 156 |

COST OF MATERIALS

| S.No. | Particulars | Quantity | Rate | Amount |
| :--- | :--- | :---: | :---: | :---: |
| 1. | Fram yard manure | 1560.0 kg | $10,00 \mathrm{~kg}$ | 15600.00 |
| 2. | Barbed wire | $1200.0 \mathrm{~m} / 120.0 \mathrm{~kg}$ | $60.50 / \mathrm{kg}$ | 7260.00 |
| 3. | Angle Iron | $239.40 \mathrm{~m} / 785 \mathrm{~kg}$ | $40.50 / \mathrm{kg}$ | 31792.50 |
| 4. | plastick drum | 156 nos | 690.50 each | 107640.00 |
| 5. | Cement | 6.50 bags | $255.00 / \mathrm{bag}$ | 1657.50 |
| 6. | Coarse Sand | 0.450 cum | $910.00 / \mathrm{cum}$ | 409.50 |
| 7. | G.S.Grit $10-20 \mathrm{~mm}$ | 0.900 cum | $1250.00 / \mathrm{cum}$ | 1125.00 |
| 8. | Plants | 156 nos | 18.00 each |  |
|  |  | Total |  |  |

## LBOUR CHARGES

| S.NO. | Particulars | Quantity | Rate | Amount |
| :--- | :--- | :--- | :--- | :--- |
| 1. | Earth work | 1514.02 cum | $36.66 / \mathrm{cum}$ | 55503.97 |
| 2. | C.C.W 1:2:3: | Fixing of angle iron | 1.064 cum | 492.00 cum |
| 3. | Fixing of barbed wire | 15 man days | $100 /$ Man Day | 1000.00 |
| 4. | Total | $100 /$ Man Day | 1500.00 |  |


|  | Total Expenditure |  |
| :--- | :---: | :---: |
| 1. Cost of materials |  | $\mathbf{1 , 6 8 , 2 9 2 . 5 0}$ |
| 2. Labour Charges | Total | $\mathbf{5 8 , 5 2 7 . 8 5}$ |
|  | say | Rs.2,26,819.50.00 |
|  |  | Rs.2,26,820.00 only |

5- Lack of infrastructure including marketing.

## (B) Soil constraints

1- Poor nutrient status of the soil
2- Physical impediment
3- Moisture stress / water logging / inadequate drainage.
(C) Plant related constraints

1- Problem of plant establishment
2- Physiological disorders
3- Fruit drop and poor productivity
4- Incidence of insects-pests.
However, apart from the above mentioned constraints, the measure bottleneck in horticulture development are poor technological advancements, high initial establishment cost, high input demand , timely operation and seasonal shortage of labours, etc.

## CONCEPTS AND ADVANTAGES OF CONSERVATION HORTICULTURE

Conservation horticulture or horticulture land use based on soil and water conservation principle is a suitable alternative for utilization and management of land under rainfed conditions. Thus horticulture development in watershed• management appears to be the most appropriate technique for sustained productivity as well as for restoration of degraded lands. In fact, horticulture system meet all the basic needs-food, fruits, fodder, fuel and timber besides, providing employment and sustaining a number of products for industries.

The fruit trees grown with crops can provide. fueJ from pruned-shoots and dried- bra leaf--fodder for animals and leaf litter that can be utilized as mulch material and organic matter the leaf litter of deciduous fruit trees not only protects the top soil from the impact of raindrops but also improve soil structure, reduces évapotrànspiration, increases infiltration and add to the nutrient status of soil. Therefore conservation based horticulture land use system assumes great significance as fruit trees on degraded lands provide higher returns and offer alternative opportunity in non-arable areas where cropping may not be possible.

## CONSERVATION HORTICULTURE PRACTICES

Some of the important practices are given below
1- Selection of Suitable Fruits Types: For the success of conservation horticulture, selection of hardy varieties resistant to diseases and pests and use of local or other hardy root stocks for raising fruit-trees is of great importance. The major part of the reproductive cycle i.e. Period from flowering to fruiting must also fall during maximum water availability period and the root ripening must be completed before the onset of dry summer (April-May). Ber, Guava, Karonda, Be), Amla, Lemon, and Phalsa etc. are the plants which fulfill this requirement and all these fruit plants are most suitable for Bunde region.

2- Planting Techniques:_ For degraded lands, pits should be dug of im x im x im size, the excavated soil is mixed with Farmyard Manure (FYM) @ 5-10kg/pit with doses of potash and phosphorous and some insecticide / pesticide (numicide / aldrex) for prevention of white ant. Planting of the fruits plants should be done with the onset of monsoon.

3- Use of Root Stokes:_ Budding and grafting on the wild root stock gives benefit of the establishment root and in turn provides better quality fruits with high field potential. For example, Ziziphun mauritiana, a wild ber can be successful budded with scion of improved cultivars, This practice is only successful where sizable patch of wild root stock is available. The budded/grafted stock needs intensive management as it is required to be protected from the wild animals, birds,
insects, pests etc. The wild root stock develops efficient top root to provide moisture and nutrients to the scion. Amla. Bel is other examples of raising the improved cultivation the wild root stock.

4- In Situ Water Harvesting:_ Since on slopy lands, runoff water is considerably higher, therefore, it should be harvested and used. The run off can be utilized for growing fruit plants in such a way that each tree in the established plants is at the time of fruit setting and fruiting. Moisture available at this critical period improves the fruit yield.

Runoff water will be harvested and stored in tanks during the rains. The stored water will be utilized at the time when the fruit trees show moisture stress during dry months. Counter trenches will dug between the rows of fruit trees because this is effective in conserving moisture and providing soil erosion.

5-Mulching: Mulching is practiced to conserve moisture. It prevents the loss of moisture by evaporation and improve water intake by the soils. Various organic (Straw, hay, manure, tree leaves, dry wads) Mulches are used for mulching. Use of plastic mulch has been taken in rainfed and dryfarrming conditions to increase the productivity by minimizing evapotranspiration losses.

6-Drip Irrigation: Drip irrigation saves water by 40 to 70 percent and two to three times mare area can be irrigated with the same amount of available water. It has the advantages that it ensures uniform distribution of water, provides perfect control over water application and minimizing the losses during convergence and seepage.

## Estimate of Orchard Development in the Watersheds Per Hectare (Without Fencing)

| S.No. | Particulars | Quantity | Rate | Amount | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A, Horticulture |  |  |  |  |  |
| 1. | Soil Working 1m x 1m size pits (270nos.) including cost of refilling | 270.00 cum | 36.66/cum | 9898.20 | Since,the project is to be operated in a participatory mode,countribution in the form of labour input for pit digging, FYM and its applications, weeding and hoeing are to be provieded by the participating farmers, hens the cots are no included in the eastmates, |
| 2. | Aplicetion of Farmyard manure inclding cast |  | L.S. | 450.00 |  |
| 3. | Cost of NPK mixture. neemicide @ 250 gm/plants |  | L.S. | 400.00 |  |
| 4. | Cost of plants (including 15\% etc. for mortality) including transportation and planting | 310 nos. | $\begin{aligned} & \text { 15.00/Plan } \\ & \text { t } \end{aligned}$ | 4650.00 |  |
| 5. | Casualty replacement @ 10\% of item no. 4\&5 |  |  | 465.00 |  |
| 6. | Cost of 2 weeding and hoeing |  | 1.00/Plant | 540 |  |
| 7. | Contingency and unforeseen (3\%) |  |  | 492.00 |  |
|  | Total |  |  | Rs.6,007.00 |  |
|  | Say |  |  | Rs. 6,000.00 |  |
|  | Maintenance cost 6 Year onwards - 15\% of 6 year cost |  |  | 900.00 |  |
|  | For next 5 years i.e.,Rs. 900x5 |  |  | 4500.00 |  |
|  | Total Cost |  |  | Rs. 10,500.00 |  |
|  | Say |  |  | Rs.10,500.00 |  |
| B. Agro-Horticulture (Cost per ha) |  |  |  |  |  |
| 1 | Cost of raising 270 plants UP to 5 year @ Rs. 10,000.00 |  |  | 10500.00 | The remarks mentioned under Horticulture are also applicable for agro Horticulture. |
| 2 | Cost of rasising agricultural Crops @ Rs. 5,000 per hectare per year |  |  | 5000.00 |  |
|  | Total |  |  | Rs.15,500.00 |  |

Estimate of Orchard Development in the Watersheds Per Hectare (With Fencing)

| S.No. | Particulars | Quantity | Rate | Amount | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A, Horticulture |  |  |  |  |  |
| 1. | Soil Working 1m x 1m size pits (270nos.) including cost of refilling | 270.00 cum | 36.66/cum | 9898.20 | Since,the project is to be operated in a participatory mode,countribution in the form of labour input for pit digging, FYM and its applications, weeding and hoeing are to be provieded by the participating farmers, hens the cots are no included in the eastmates, |
| 2. | Aplicetion of Farmyard manure inclding cast |  | L.S. | 450.00 |  |
| 3. | Cost of NPK mixture. neemicide @ 250 gm/plants |  | L.S. | 400.00 |  |
| 4. | Cost of plants (including $15 \%$ etc. for mortality) including transportation and planting | 310 nos. | 15.00/Plan | 4650.00 |  |
| 5. | Casualty replacement @ 10\% of item no. 4\&5 |  |  | 465.00 |  |
| 6. | Cost of 2 weeding and hoeing |  | 1.00/Plant | 540 |  |
| 7. | Contingency and unforeseen (3\%) |  |  | 492.00 |  |
|  | Total |  |  | Rs.6,007.00 |  |
|  | Say |  |  | Rs. 6,000.00 |  |
|  | Maintenance cost 6 Year onwards - 15\% of 6 year cost |  |  | 900.00 |  |
|  | For next 5 years i.e.,Rs. 900x5 |  |  | 4500.00 |  |
|  | Total Cost |  |  | Rs. 10,500.00 |  |
|  | Say |  |  | Rs.10,500.00 |  |
| B. Agro-Horticulture (Cost per ha) |  |  |  |  |  |
| 1 | Cost of raising 270 plants UP to 5 year @ Rs. 10,000.00 |  |  | 10500.00 | The remarks mentioned under Horticulture are also applicable for agro Horticulture. |
| 2 | Cost of rasising agricultural Crops @ Rs. 5,000 per hectare per year |  |  | 5000.00 |  |
| 3. | Fencing |  |  | 45300.00 |  |
|  | Total |  |  | Rs.60,800.00 |  |

## COST IN PLANTING ONE PLANT WITH DIGGING, FILLING MIXED WITH FYM AND COST OF PLANT

| S. <br> n | Particular | No. | L | B | D/H | Quantity | Rate | Amount |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Earth work in digging | 1 | 1.0 | 1.0 | 1.00 | 1.00 | 36.66 | 36.66 |
| 2 | Cost of FYM,in kg/pit | 1 | - | - | - | 10 kg | 8.00 | 8.00 |
| 3 | Filling of pits mixed with FYM <br> and soil | 1 | 1.0 | 1.0 | 1.0 | 1.00 | 36.66 | 36.66 |
| 4 | Cost of plants | 1 | - | - | - | 1 | 18.00 | 18.00 |
| Total |  |  |  |  |  |  |  |  |

ESTMATE FOR SILVI-PASTROAL SYSTEM (RS.ha ${ }^{-1}$ ) PLANTATIONS (800 PLANTS ha ${ }^{1}$ )

| S. <br> N | Particulars of work | Rate <br> (Rs.) | Cost <br> (Rs.) | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| $1-$ | Clear felling or bush clearance of area Infected <br> with Lantana etc,including cost of burning | LS | 550.00 | The area is to be procted through biofencing |
| 2- | Soil working - earth work ,digging of Pits / holes <br> 60 cm deep, 30cm dia -800 Nos.Including cost of <br> refilling and trenching.(400trenches/ha) | LS | 6085.00 |  |
| 3- | Cost of seedlings for 900 nos and grass /legumes <br> seeds and planing.sowing | - | 2050.00 | Rs.2.00 per seeding |
| 4- | Weeding and hoeing(2 Nos.) | LS | 300.00 |  |
| Total | 898 |  |  |  |
| Mainteance <br> $\mathbf{6 ~ Y e a r s ~ 1 5 \% ~ o f ~ t h e ~ 6 ~ y e a r ~ X p e n d i t u r e ~ i n c l u d i n g ~ b e i n g ~ u p ~ 6 ~ y e a r ~ f a i l u r e ~}$ |  |  |  |  |
| Grand total |  |  |  |  |
| Say |  |  |  |  |

## DEMONSTRATION OF GREEN MANURING

Green Manuring is very useful but due to sowing of Kharif season crop, lack of suitable type of seeds, and limitation of moisture, it is not widely practiced. Green Manuring brings immediate advantage because of its quick decomposition where as FYM and compost improves the soil physical condition in the long-run. Benefits of Green Manuring accrue from substitution of chemical fertilizers, enhance soil biological activities and erosion control due to vegetative cover. Sesbania Species (Dhaincha) and Crotolaria Juneea (Sunhemper Sanai) are most common green manure crops. They accumulate about $100 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ in their biomass and $64-88 \%$ of this is derived from atmosphere. Apart from direct benefit of green Manuring as a source of nutrients and organic matter, it has the capacity to mobilize soil phosphorus and other nutrients. It also helps in reclamation of problem of soil, e.g., Sesbania helps in removing exchangeable sodium and reclamation of salt affected soils.
In District Sant Kabir Nagar more fields are kept fallow and only single crop in Rabi is grown. Therefore, this area is suitable for Green Manuring. Therefore, in I.W.M.P.III Farrukhabad Project, efforts will be made to oblise the farmers for Green Manuring.
4 typical estimate is made for Green Manuring is given below:
ESTIMATE FOR GREEN MANURING IN THE WATERSHED (PER ha)
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { S.No. } & \text { Parcticulurs } & \text { Rate } & \text { Cost } & \text { Remark } \\ \hline 1 & \text { Seed of Sesbania (Dhanicha) } 25 \mathrm{Kg} / \mathrm{ha} & 25.00 / \mathrm{kg} & 625 & \begin{array}{l}\text { Since the prokect to be } \\ \text { operated in a }\end{array} \\ \hline 2 & \begin{array}{l}\text { Tillage operation before sowing and to } \\ \text { plough the plants of dhaincha after } 40- \\ 45 \text { days of sowing for Green Manuring }\end{array} & \begin{array}{l}1000 / \text { ha Before and } \\ \text { after saring }\end{array} & 2000.00 \\ \text { participatory mode } \\ \text { contribution in the form } \\ \text { of tillage will be done by } \\ \text { farmers in not included } \\ \text { in the estimate }\end{array}\right\}$

Therefore cost per hectare of Green Manuring is Rs. 625.00/ha

## PASTURE MANAGEMENT

Introduction: The sound animal industry in any country centers around good quality feed and fodders. The livestock population in India is nearly $15 \%$ of the total livestock population of the world, tough we have only $2 \%$ of the world's geographical area. The project on for green and dry fodder requirement in India has been estimated at 1061 and 590 million tons by 2010 A-D, while the present feed and fodder resources in the country can meet only $4 \%$ of the requirement. The grazing intensity is very high i.e., 26 adult cattle unit (ACU)/ha as against 0.8 ACU in the developing countries. The importance of grasses for protection and production, the two aspects of soil and water conservation is well known. Grass is unique in that it is the only resource utilized in situ by grazing. A "grassland" or more appropriately, a "range" is defined as "the areas which are predominantly covered with grasses or grass like plants and are primarily utilized as for age for grazing animals or used as hay." The grasslands are the major sources of food to the animals.

Pasture Management: All grazing areas are referred to as pastures, but ore specifically the term is applied to cultivated grassland used for grazing. Thus pastures are artificial grasslands with or without non-grass vegetation (such as legumes) that are created with selected high forage-yielding grass and legume species and with inputs like fertilizers and irrigation and carefully managed to exclude all other vegetation. Pastures are usually fenced and used either for grazing, for gay and silage making or for both.

Intensive Fodder Production: In areas where. the. major enterprise of the farmers centers around the milk production. Continuous supply of green fodder round the year is the basis for success of such as industry. Under the aegis of ICAR's all India coordinated Research Project on Forage Crops, several highly productive fodder cropping system have been tested and recommendations made for their general use. For central region important intensive crop rotations are presented as given below:

| Zone wise crop rotations | Green fodder yield(t / ha) |  |
| :--- | :--- | :--- |
| Central region | 286.3 |  |
| $1-$ | Hybrid napier +Cowpea-Berseem+Japanrape | 197.2 |
| $2-$ | Maize+Cowper-Jowar-Berseem+Japanrape | 168.6 |
| $3-$ | iawar+Cowper-Berseem+Japanrape-Jawer+Cowpea |  |

Conservation on of Forages: In order to sustain animal production, it is essential that the optimum feeding should be maintained round the year. In India, we have two seasons, rainy season and winter season, when surplus quantities of green fodder is availablecountry to this there are 2 to 3 months of lean periods(October-November and April to July) when the fodder availability to animals is at its low. In the summer months, it is difficult even to meet the maintenance
requirements of the animals. Stage of maturity to feed the animals adequately during the lean period. The conservation of forages could be done in the form of silage from cultivated fodders (legumes and cereals) and also pasture grasses.

Forages could also be conserved in the form of hay when dried to its nutrients. This feed stuff is quantitatively important from both maintenance and nutritional point of view.

Agro-forestry system for fodder production:_A number of fodder trees play an important role in human food security through their function as animal food sources, especially as drought services. Agro-forestry systems consisting of such tress and animals and/or pasture are called Silvo-Pastoral system. Silvi-Pasture (or Silvo-Pastoral system) is the most promising alternate land use system which integrates multipurpose trees, shrubs, legumes and grasses mostly on non arable, degraded and marginal lands for optimizing land productivity. It helps in conservation of vegetation, soil and nutrients and provides forage, timber and fuel wood on a sustainable basis. Potentials of Semi-arid region for different forage production systems.

Region Forge Production Systems Semi arid Integration of Agro-Silvi-Pasture, dry land agriculture on cultivated lands. Forage-cumCopping forming on the marginal and sub marginal lands with intercropping dry lands cereals and legumes

## ROLE OF GRASSLAND IN SOIL CONSERVATION

The grass plant itself protects the soil from the forces of water erosion including the impact of rain drops and surface flow. Grass acts a spring cushion intercepting and broking up the falling rain drops in their way down. Conducting the water down the blades and stems of the plants and finally allowing it to reach the ground as fine sprays without disturbing the surface. Clamps of grass plants, in a mechanical way, obstruct-flowing water and reduce its rate of flow. In fact to control soil erosion whatever technique is adopted, there are four approaches to deal with the problem:

1- To condition the soil to make it resistant to determent and transportation and create more absorptive surface layer.
2- To cover the soil so that it is protected from the impact of wind and rain drops.
3- To decrease the velocity of wind or runoff water.
4- To provide safe disposal outlet for surplus run off.
Grass in the nature highly efficient device to protect the soil from destructive forces like rain , wind etc. Grass and legumes increase the aggregation of soil particles; improve soil structure and water holding capacity of the soil. Grasses gives quicker protection to eroded lands. To establish gully sides, water ways, gully head and check dams. Grass is perhaps the most effective and economical tool. It can put to various uses in soil conservation:

1- Strip cropping, rotational cropping or lay farming.
2- Stabilization of bunds and terraces.
3- Stabilization of gullies, diversion or drainage channels.
4- Stabilization of sand dunes.
5- Meadows and pasture on steep slopes.
6 - Fertility builder for eroded soil.

CHAPTER- 13

## MAPPING









Expected/Estimated Outcomes (IWMP-III ${ }^{\text {rd }}$ )-FARRUKHABAD

| S. <br> No. | Name of the District | Item | Unit of measurement | Pre-project Status | Expected Postproject Status | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Farrukhabad | Status of water table | Meters | 36.17 | 34.12 |  |
| 2 |  | Ground water structures repaired/rejuvenated | No. | - | 120 |  |
| 3 |  | Quality of drinking water | Quality | Poor | Good |  |
| 4 |  | Availability of drinking water | Days | 320 | 365 |  |
| 5 |  | Increase in irrigation potential | \% | 3 | 6 |  |
| 6 |  | Change in cropping/ land use pattern | Cropping pattern | Single/ double | Double/ multiple |  |
| 7 |  | Area under agricultural crop | Ha | 4590.00 | 5640.00 |  |
| 8 |  | i ${ }^{\text {i }}$ Area under single crop | Ha | 2754.00 | 3102.00 |  |
| 9 |  | ii Area under double crop | Ha | 1145.50 | 1410.00 |  |
| 10 |  | iii Area under multiple crop | Ha | 688.50 | 846.00 |  |
| 11 |  | Net increase in crop production area | Ha | - | 1050.00 |  |
| 12 |  | Increase in area under vegetation | Ha | 200.00 | 259.00 |  |
| 13 |  | Increase in area under horticulture | Ha | 210.00 | 354.00 |  |
| 14 |  | Increase in area under fuel \& fodder | Ha | 190.00 | 267.00 |  |
| 15 |  | Increase in milk production | Av.lit/day/ cattle | 1.75 | 3.10 |  |
| 16 |  | No. of SHGs | No. | 97 | 194 |  |
| 17 |  | Increase in no. of livelihoods | No. | 5 | 15 |  |
| 18 |  | Increase in income | Rs. | 19100.50 | 25100.50 |  |
| 19 |  | Migration | \% | 9.00 | 5.00 |  |
| 20 |  | SHG Federations formed | No. | 9 | 19 |  |
| 21 |  | Credit linkage with banks | No. | 8 | 32 |  |
| 22 |  | Resource use agreements | \% | Agreed | $100 \% \text { as per }$ required |  |
| 23 |  | WDF collection \& management | \% | 5-10 | 100\% collection during project period |  |
|  |  | Summary of lessons learnt |  |  |  |  |

## Date;

Signature of officers authorized by State Govt. with name and Designation

## DPR PLAN ABSTRACT

The collection of all the relevant data of watershed area and the possible option and solution are described with the help of feedback of focused discussion and detailed perspective plan for the watershed area with year wise and activity wise semmarized for the DPR plan sbstract for 5 year (2010-11 to 2014-15).

The summary of the above document is verified by the following persons:

## Prepared By:

Bhoomi Sanrakshan Adhikari
Dept. of Land Development \& Water Resources
District-Farrukhabad

Technically Approved By:
Deputy Director
Dept. of Land Development \& Water Resources
Region-Farrukhabad

## Physically \& Financially Approved:

Project Director<br>District Rural Development Authority

Chief Development Officer District- Farrukhabad

