Detailed Project Report Integrated Watershed Management Programme-V

Year 2010-2011 (IWMP-V)

Department of Land Development and Water Resources, Uttar Pradesh

Project Implementing Agency Bhoomi Sanrakshan Adhikari (L.D.W.R.), Moth, Jhansi, U.P.

CERTIFICATE

This is to be certified that the proposed Project (IWMP-V) comprising eight micro-watersheds of district Jhansi, Uttar Pradesh has been selected for its sustainable development on watershed basis under Integrated Watershed Management Programme. The land is physically available for proposed interventions and is not overlapping with any other schemes. It will be developed as per Common Guidelines for Watershed Development Project-2008, GOI, New Delhi. The significant results will be achieved through proposed interventions on soil and water conservation, ground water recharge, availability of drinking and irrigation water, agricultural production systems, live stock, fodder availability, livelihoods of asset less, capacity building, etc. The proposed **Detailed Project Report** of **IWMP-V**, **2010-11** is approved for its implementation.

Soil Conservation Officer IWMP-V Dept. of LDWR, Moth, Jhansi, UP

Deputy Director LDWR, Jhansi, UP

Project Director DRDA, Jhansi, UP

> **Chief Development Officer** Distt.-Jhansi, UP

EXECUTIVE SUMMARY

All the micro-watersheds of IWMP-V, 2010-11 are situated in Bamaur block of District Jhansi, Uttar Pradesh. The project consists of nine microwatersheds namely Maletha (2c2A6b2a), Kudri (2C2A6b1b), Dundi-I (2C2A6a1e), Dundi-II (2C2A6a1f), Kurentha (2C2A6a2a), Dakhaneswar (2C2A6a2b), Garhawai (2C2A6a2c), Pahra (2C2B1a1c) and Dhanaura (2C2B1a1d) with total geographical area of 7136.92 ha, out of which 5970.00 ha is treatable with total outlay of Rs. 716.40 lakh under Integrated Watershed Management Programme. The Project Implementing Agency (PIA) is Bhumi Sanrakshan Adhikari, Department of Land Development and Water Resources, Moth, Jhansi, Uttar Pradesh.

All micro-watershed falls in agro-climatic zone of Central Plateau Hill Region representing a transitional zone of tropical sub-humid to semi-arid and comes under hot moist semi-arid ecological sub-region. The dominant slope category in the micro-watershed were 0-3 per cent followed by 3-5 per cent. According to Strahler's system of stream ordering, the natural drainage system of the different micro-watershed was classified.

To achieve the sustainable development, all kinds of activities related to natural resource management, production systems and livelihood options for asset less people are described in Chapter-5. The total cost of the project is Rs. 1238.52 lakh. The deficit of Rs. 522.12 lakh will be made through convergence of different development schemes sponsored by Central and State Govt.

Major crops of the watershed were urd, mung, sorghum, til and pigeon pea during *kharif* and lentil, chickpea, field pea, durum wheat, wheat, linseed and mustard during *rabi*. The productivity of these crops is significantly lower than the national and state average. The cropping intensity during *kharif* is significantly lower than the *rabi*. The pre-dominant tree species were Neem (*Azadirachta indica*), Babool (*Acacia nilotica*), Palas and Ber (*Zizyphus* spp.).

Participatory Rural Appraisal (PRA) exercise was conducted to understand the people's needs and problems. The exercise brought out pressing needs and preferences of people for water harvesting structures through pucca checkdams on ephemeral streams, earthen bunding to protect soil erosion from agricultural fields along with field drainage structure, crop varieties with improved package of practices, agroforestry interventions and improved cultivation of fodder production, etc.

The Watershed Committee (WC) and SHGs have been constituted and registration of Watershed Committees were done under Societies Registration Act XXI, 1860. Active participation and co-operation of community will be ensured by building their capacities through exposures and trainings.

The overall B C Ration, including crops and animals, is 2.62 as compared to the 2.16 in the pre project scenario.

INTRODUCTION AND BACKGROUND

1. Project Background

Maletha (2c2A6b2a), Kudri (2C2A6b1b), Dundi-I (2C2A6a1e), Dundi-II (2C2A6a1f), Kurentha (2C2A6a2a), Dakhaneswar (2C2A6a2b), Garhawai (2C2A6a2c), Pahra (2C2B1a1c) and Dhanaura (2C2B1a1d) Watershed project is situated in Bamaur block of District Jhansi. The project area is consisting twenty two villages as per detailed mentioned in the following table with total geographical area of 7136.92 ha, out of which 5970.00 ha. area is under treatment of Integrated Watershed Management Programme (IWMP –V) starting year 2010-11.

Table-1: Details of village wise treatable area in the IWMP -V

Name of microwatershed	Code of microwatershed	Total geographical area (ha)	Treatable area (ha)
Maletha	(2c2A6b2a)	987.68	825.00
Kudri	(2C2A6b1b)	868.62	725.00
Dundi-I	(2C2A6a1e)	693.9	580.00
Dundi-II	(2C2A6a1f)	697.51	585.00
Kurentha	(2C2A6a2a)	713.97	595.00
Dakhaneswar	(2C2A6a2b)	790.77	660.00
Garhawai	(2C2A6a2c)	563.57	475.00
Pahra	(2C2B1a1c)	690.77	575.00
Dhanaura	(2C2B1a1d)	1130.13	950.00
Τα	otal	7136.92	5970.00

1.2 Need and Scope for Watershed Development

Bundelkhand region was in a grip of severe drought continuously from 2004 to 2007. In the region, more than 85 per cent of open wells were dried up due to deficit rainfall. Cattle were abandoned due to shortage of water and fodder. Most part of the region was dependent on drinking water supply through tanker. Therefore, management of natural resources on watershed basis is urgent need of the region. Watershed project was selected on the basis of criteria mentioned in Table 1.2 and composite ranking was developed on the basis of these parameters. The seventeen criteria was taken with total of 205 weightage points. The criterion taken are availability of drinking water, irrigation, degree of soil erosion, water holding capacity, area under rainfed agriculture, status of field bund/contour bund / graded bund, presence of hard rock below the land, options for livelihood, percentage of small and marginal farmers, degraded land, ground water status, status of technical knowledge for improved farming systems, weather conditions, poverty index (% of poor population), virginity of land, productivity potential of land and soil organic carbon status. The IWMP –V micro-watershed scores 91.64 per cent weightage points (Table 1.3). Over exploitation of existing vegetation, expansion of agricultural activities on degraded lands without due care of soil and water resources and faulty cultural practices on medium to shallow soils has aggravated the situation as resulted in wide spread erosion and land degradation. In many of the areas the parent rock is exposed. Even most of the agricultural land has been converted to wasteland. Due to reduction in vegetal cover and no provision for surface water storage, all the rain water runs along with soil particles. Ground water recharge is negligible on account of rocky sub strata causing slow growth of trees and low yield of crops. This situation can certainly be corrected by *in-situ* water harvesting and planting of trees in agricultural fields, on bunds and wastelands. To achieve sus

Long Term Objectives:

- To optimize productivity of the land
- To restore ecological balance in degraded and fragile eco-system
- To narrow down the disparity between rainfed and irrigated areas
- To create sustained employment opportunities

S. No.	Criteria	Maximum	Range & Score			
		Score				
1	Drinking water	15	Very poor	Poor	Good	Very Good
			Dependence on water	Partial availability	Round the	Round the year
			supply through tanker	within the periphery of	availability within	availability in
			(15)	3-4 km	the periphery of 3-4	watershed
				(10)	km (5)	(0)
2	Irrigation	10	No irrigation (10)	Life saving irrigation	Partial life saving	Fully covered (0)
				(7.5)	irrigation (5)	
3	Degree of soil erosion	10	Severe (10)	Medium (7.5)	Low (5)	No erosion (0)
4	Water holding capacity	10	Very poor (10)	Poor (7.5)	Good (5)	Very Good (0)

Table 1.2: Criteria and weightage for selection of watershed

5	Area under rainfed agriculture	15	More than 90% (15)	80 to 90 % (10)	70 to 80 % (5)	Below 70% (Reject) (0)
6	Status of field bund/contour bund / graded bund	10	Below 20 % (10)	50 to 20 % (7.5)	80 to 50% (5)	Above 80% (2.5)
7	Presence of hard rock below the land	15	Hard rock starts from 5 to 20 feet (15)	Hard rock starts from 21 to 50 feet (10)	Hard rock starts from 51 to 100 feet (5)	Deep soil depth (0)
8	Options for livelihood	10	Very poor (10)	Poor (7.5)	Good (5)	Very Good (0)
9	% of small and marginal farmers	10	More than 80% (10)	50 to 80 % (5)	Less than 50% (3)	
10	Degraded land	15	High above 50% (15)	Medium 25 to 50% (10)	Low less than $10-25\%$ (5)	Very low Less than 10% (0)
11	Ground water status	10	Very poor (10)	Poor (7.5)	Good (5)	Very Good (0)
12	Status of Technical Knowledge for improved farming systems	10	Very poor (10)	Poor (7.5)	Good (5)	Very Good (0)
13	Weather condition	15	Uncertain weather condition / Continuous drought for three years (15)	Drought comes one in five years (10)	Drought comes one in ten years (5)	Normal weather condition (0)
14	Poverty index (% of poor population)	10	Above 80% (10)	80 to 50 (7.5)	50 to 20 % (5)	Below 20 % (2.5)
15	Virginity (No treatment /intervention in last five years)	10	Above 80% (10)	80 to 50 (7.5)	50 to 20 % (5)	Below 20 % (2.5)
16	Productivity potential of land	15	Lands with low production & where productivity can be significantly enhanced	Lands with moderate production & where productivity can be enhanced with	Lands with high production & where productivity can be marginally enhanced	-

			with reasonable efforts	reasonable efforts	with reasonable	
			(15)	(10)	efforts (5)	
17	Organic carbon status	15	Very low (15)	Low (10)	Medium (5)	Normal (0)

Table 1.3: Weightage of the project

S. No.	Criteria	Weightage points
1	Drinking water	10
2	Irrigation	10
3	Degree of soil erosion	10
4	Water holding capacity	7.5
5	Area under rainfed agriculture	15
6	Status of field bund/contour bund / graded bund	10
7	Presence of hard rock below the land	10
8	Options for livelihood	10
9	% of small and marginal farmers	10
10	Degraded land	15
11	Ground water status	10
12	Status of Technical Knowledge for improved farming systems	10
13	Weather condition	15
14	Poverty index (% of poor population)	10
15	Virginity	10
16	Productivity potential of land	10
17	Organic carbon status	15
	Total Weightage (Out of total 205)	187.5
	Weightage Percentage	91.46

1.3 General Description of the Watershed Table 1.4: Project at a Glance

S. No.	Particulars	Details
1.	Name of State	Uttar Pradesh
2.	Name of Project	IWMP – V
3.	Name of District	Jhansi
4.	Name of Block	Bamaur
6.	Four Major reasons for selection of watershed	Erosion

		Nutrient loss
		Water scarcity
		Low productivity
8.	Catchment	Betwa River
9.	Name, Address of PIA	Bhumi Sanrakshan Adhikari, Deptt. of Land Development & Water
		Resource, IWMP –V, Moth, Jhansi
10.	Area of the Project (ha)	7136.92
11	Area proposed to be treated (ha)	5970.00
12	Year of Sanction	2010-11
13	Duration of Project	4 yrs
14	Project Cost (Rs. In Lakh)	716.40

1.4 Details of ongoing watershed programme Presently, no watershed development programme is going on in the micro-watershed.

GENERAL DESCRIPTION OF PROJECT AREA

2.1 Location: The IWMP –V micro-watershed is located in Bamaur block of Jhansi district. It is about 85 km from Jhansi on Jhansi to Gursarain to Bamaur road. The details of location of each micro-watershed are given below:

Maletha	Longitude	
	Latitude	
Kudri	Longitude	79 ⁰ 13' 9.48" - 79 ⁰ 16' 18.88" E
	Latitude	25 [°] 45' 21.32" – 25 [°] 47' 46.77" N
Dundi-I	Longitude	79 ⁰ 14' 15.95" - 79 ⁰ 15' 42.21" E
	Latitude	25 [°] 44' 31.75" – 25 [°] 46' 22.58" N
Dundi-II	Longitude	79 ⁰ 12' 57.52" - 79 ⁰ 15' 3.94" E
	Latitude	25 [°] 44' 23.23" – 25 [°] 46' 2.21" N
Kurentha	Longitude	79 ⁰ 13' 0.00" - 79 ⁰ 15' 30.00" E
	Latitude	25 [°] 43' 30.00" – 25 [°] 44' 30.0" N
Dakhaneswar	Longitude	79 ⁰ 12' 24.80" - 79 ⁰ 14' 40.74" E
	Latitude	25 [°] 40' 51.71" – 25 [°] 43' 34.49" N
Garhawai	Longitude	79 ⁰ 12' 4.46" - 79 ⁰ 13' 26.55" E
	Latitude	25 [°] 40' 40.32" – 25 [°] 42' 33.05" N
Pahra	Longitude	
	Latitude	
Dhanaura	Longitude	79 ⁰ 12' 4.46" - 79 ⁰ 13' 26.55" E
	Latitude	25 [°] 40' 40.32" – 25 [°] 42' 33.05" N

2.2 Area and Landuse: The total geographical area of the all micro-watershed is 7136.92 ha, out of which 5970.00 ha. is the treatable. The entire watershed is rainfed and about 10 per cent area has life saving irrigation mainly through open shallow dug wells. General topography of the watershed is mild to gentle (<1%). It has the general appearance of a plain dotted with isolated low and undulated area. The details of each MWS in respect of land use is depicted in Table 2.1:

S. No.	Name of Village	Total Geographical	Rainfed Area	Waste	Total	Settlement	Area under a	ssured irrigation
		Area		Land	Treatable	and Road	XX7 4	(ha)
					Area (ha)		Water Bodies	Dug/Bore wells
1.	Maletha	987.68	152.625	672.38	825	35.35	48.15	79.18
2	Kudri	868.62	141.375	583.63	725	48.26	36.88	58.48
3	Dundi-I	693.9	124.7	455.30	580	39.48	30.19	44.23
4	Dundi-II	697.51	90.68	494.33	585	32.84	31.52	48.15
5	Kurentha	713.97	113.05	481.95	595	36.18	30.41	52.38
6	Dakhaneswar	790.77	114.18	545.82	660	40.13	40.19	50.45
7	Garhawai	563.57	89.30	385.70	475	25.96	21.35	41.26
8	Pahra	690.77	106.38	468.63	575	30.96	34.18	50.63
9	Dhanaura	1130.13	147.25	802.75	950	51.16	58.86	70.11
	Total	7136.92	1079.53	4890.47	5970	340.32	331.73	494.87

Table 2.1: Details of land use IWMP –V Project (Area in ha)

2.3 Physiography:

The IWMP –V watersheds is situated at an elevation of some 103 to 185 m above mean sea level and has relief from 28 to 60 m. The watershed has a general slope of less than 1 per cent. General topography of the watershed is mild to gentle. The recharge of wells is very slow as it depends on perched water. Most of the area is mono-cropped due to lack of irrigation facilities. In the absence of effective field/contour/graded bunding area is affected by severe soil erosion along with nutrient loss. Heavy erosion in the absence of bunds is the major reason for the development of multi-directional slopes in the watershed. The details of Digital Elevation Model, slope and drainage pattern of the micro-watershed are described in subsequent section.

2.3.1 Digital Elevation Model (DEM): A DEM is a digital file of terrain elevations for ground positions. It is a raster representing the elevations of the ground and objects. Besides providing a source of elevation, the DEM may be used for topographic information, flow pattern, flood risk areas identification and to determine accessibility. The DEM of IWMP -V micro-watershed is shown in map section. Outlet of the watershed was located at 103 m above msl, whereas land elevation varied from 103 to 185 m in the watershed.

Elevation

Name of MWS	Minimum	Maximum	Relief
Maletha			
Kudri	103	163	60
Dundi-I	128	162	34
Dundi-II	136	170	34
Kurentha	141	169	28

Dakhaneswar	151	181	30
Garhawai	157	185	28
Pahra			
Dhanaura	130	163	33

2.3.2 Slope Map Slope and aspect of a region are vital parameters in deciding suitable land use, as the degree and direction of the slope decide the land use that it can support. Slope is also very important while determining the land irrigability and land capability classification and has direct bearing on runoff.

Spatial distribution of different slope classes was prepared using Arc GIS and is shown in map section. Slope was divided into three classes viz. 0-3, 3-5, and more than 5 per cent. Per cent areal extent of different slope classes in IWMP -V micro-watershed is shown in Table 2.2. The dominant slope category in the micro-watershed were 0-5 per cent (80%) followed by 5-8 per cent (15.50%). It was also noticed that slope of major area of agricultural land varied from 0-8 per cent.

Slope categories (%)	Area (ha)	Percent of total area
MWS-	Maletha	
0-3		50.18
3-5		34.26
5-8		10.42
> 8		5.14
Total		100.00
MWS-	Kudri	
0-3	430.14	49.52
3-5	282.56	32.53
5-8	90.77	10.45
> 8	65.15	7.50
Total	868.62	100.00
MWS-	Dundi-I	
0-3	292.48	42.15
3-5	333.00	47.99
5-8	39.41	5.68
> 8	29.01	4.18
Total	693.90	100.00
MWS-	Dundi-II	
0-3	146.48	21.00
3-5	362.71	52.00

Table 2.2. Areal extent of various slope classes in the micro-watershed

5-8	111.60	16.00
> 8	76.73	11.00
Total	697.51	100.00
MWS-	Kurentha	
0-3	504.60	70.68
3-5	174.64	24.46
5-8	28.32	3.97
> 8	6.41	0.90
Total	713.97	100.00
MWS-	Dakhaneswar	
0-3	332.12	42.00
3-5	205.60	26.00
5-8	173.97	22.00
> 8	79.08	10.00
Total	790.77	100.00
MWS-	Garhawai	
0-3	293.06	52.00
3-5	118.35	21.00
5-8	90.17	16.00
> 8	61.99	11.00
Total	563.57	100.00
MWS-	Pahra	
0-3		
3-5		
5-8		
> 8		
Total		
MWS-	Dhanaura	
0-3	867.36	76.70
3-5	231.64	20.48
5-8	29.52	2.61
> 8	2.40	0.21
Total	1130.92	100.00

2.3.3 Drainage Map

Drainage of the watershed was digitized in GIS environment (Fig. 2.1). Maximun order of micro-watersheds varied from II to IVth. The detailed description of the drainage network are gven in section 2.5.

2.4 Climate:

The annual rainfall of the Bundelkhand region varies from 800 to 1300 mm, about 90% of which is received during South-West monsoon period (Singh *et al.* 2002). The major part of the rainfall is received during the month of July and August. The length of growing season in Bundelkhand ranges between 90 to 150 days depending upon rainfall and temperature regimes. The winter rains are erratic, occasional, meager and uncertain. The total rainy days/year vary from 30-45 in the region with an average of 37. The distribution of rainfall is very erratic. Low rainfall and drought are common features. Long dry spells during rainy season are also experienced often, which adversely affect the crops. It has been observed that in a cycle of 5 years, 2 are normal, 2 drought years and 1 is excessive rainfall year (Tiwari *et al.* 1998). Further, with the analysis of fifty years (1946-1995) rainfall data of Jhansi it was observed that 18 % of the years were drought, 68% normal and 14% were surplus years, implying that there is likelihood of one drought year in 5 year span (Singh *et al.* 2002). However, since last 9 years, 7 were drought years (2002, 2004, 2005 2006, 2007, 2009, 2010), out of which, 4 years (2004-2007) were severe drought. This phenomenon is likely to be recurrent in view of rise in temperature due to global warming. This acute drought led to heavy out migration to the extent of 48% of total population towards big cities in search of livelihood in 2007-08 (Anonymous 2008a). A long term 64 years of rainfall and rainy days (Fig. 2.3) analysis of Jhansi indicates a declining trend. However, a slight increase in average maximum temperature during Nov.-Feb. months (Table 2.6) and a slight decrease in average temperature during Jan. and Feb. (Table 2.5) was observed.

The climate of Jhansi is characterized by a hot dry summer and cold winter and is marked for high variability of rainfall year to year. There are primarily four seasons: – Dry Summer season – from March to May i.e. before advent of monsoon, moist summer season – from June to September (Monsoon) transition period - in October and November, which is the post monsoon period, and winter season – from December to February The coldest months in the year are December and January.

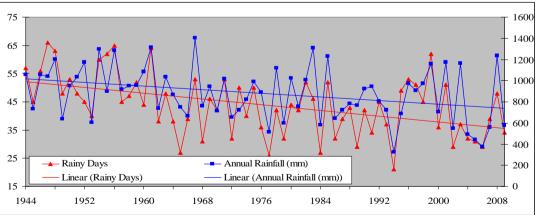


Fig. 2.3: Annual rainfall and rainy days during last 64 years at Jhansi*

Year	Rainfall (mm)	Avg. maximum temp. (⁰ C)	Avg. minimum temp. (⁰ C)
1975	875.4	32.0	17.2
1976	1104.3	32.1	17.2
1977	859.5	32.5	17.5
1978	1066.9	31.7	17.4
1979	632.5	32.5	17.8
1980	1236.7	33.0	19.0
1981	712.7	33.0	18.3
1982	1193.3	31.3	17.4
1983	1268.8	32.2	16.8
1984	769.4	32.5	16.3
1985	1137.9	33.5	18.3
1986	867.6	32.1	17.7
1987	855.2	34.6	18.5
1988	815.9	33.6	18.2
1989	610.5	32.5	17.2
1990	1097.4	31.8	17.4
1991	944.0	31.7	16.1
1992	806.4	32.2	16.6
1993	722.8	32.1	16.4
1994	559.8	32.2	16.8

 Table 2.3: Cumulative yearly rainfall, average maximum and minimum temperature at Jhansi, (1975-2009)*.

1995	778.9	32.3	16.4
1996	965.7	31.8	17.1
1997	907.7	30.4	16.9
1998	971.6	32.1	18.0
1999	1159.8	32.6	17.5
2000	705.6	32.4	16.8
2001	1173.7	32.1	16.6
2002	546.3	33.2	17.6
2003	1163.3	32.1	17.8
2004	491.3	32.5	17.5
2005	-	-	-
2006	375.2	31.4	17.1
2007	558.1	-	-
2008	1238.3	-	-
2009	578.0		

Table 2.4: Dynamics of rainfall and rainydays*

Parameters	1944-2009	1944-2000	2001-2009	
Average rainfall (mm)	877.4	900.8		729.4
Average rainydays	44	45		37
Table 2.5: Dynamics of average minim	um temperature (Degree Celsius)*			
Period	Nov.	Dec.	Jan.	Feb.
1975-84	11.6	7.0	6.5	8.8
1985-94	11.1	6.4	6.1	8.7
1995-2006	11.4	7.0	5.8	8.6

Parameters	Nov.	Dec.	Jan.	Feb.
1975-84	29.5	24.1	23.2	26.5
1985-94	29.4	24	23.5	26.6
1995-2006	29.9	24.7	21.6	25.9

Table 2.6: Dynamics of average maximum temperature (Degree Celsius)*

*Source: Indian Grassland and Fodder Research Institute, National Research Centre for Agroforestry, Jhansi and IMD, Pune)

The average rainfall of Jhansi district is 877.4 mm (1944-2009) with average rainy days of 44. Out of 66 years, 35 years received less than the average rainfall. In spite of the fairly decent average rainfall of the districts, its uncertainty and erratic behavior leads to dry spells causing droughts. There has been severe drought, a famine like situation from 2004 until 2007. The uncertainty in the rainfall is the main reason of poor agriculture yield. Rain is also received in a very small amount during November to May, but this rain is very important for agriculture in this region. This rain is called "Mahawat" in the vernacular language. The brief account of drought since 2004 in the region is depicted in Table 2.7.

Table 2.7: Details of drought in the project area

Sr. No.	Particular	Villages	Years	Intensity
1.	Drought	IWMP –V	2004-05	Severe
			2005-06	Severe
			2006-07	Severe
			2007-08	Severe
			2008-09	Normal
			2009-10	severe

2.5 Watershed Characteristics

The analysis was achieved through the measurement of linear, areal and relief aspects of the basin using Arc GIS. The characteristics were studied microwatershed wise and presented in subsequent section:

Maletha micro-watershed

A. Linear aspects

Stream order	Number of streams	Stream length	Mean stream length	Stream lengt	th ratio (R _L)	Bifurcation	ratio (R _b)		
	(N_u)	$(\mathbf{L}_{\mathbf{u}})$	(\mathbf{L}_{sm}) (\mathbf{km})	П/І Ш/П		II / I III / II		I / II	II / III
		(km)							
1	2	3	4	5	5	6			
Ι	6	3.303	0.551	1.99	-	3.00	-		
II	2	6.58	3.290						

Mean bifurcation ratio (R _{bm})	Length of the overland flow (L _g) (km)	Basin length (L _b) (km)	Basin perimeter (P) (km)	Fineness ratio (R _{fn})	Length of main channel (L _m) (km)
7	8	9	10	11	12
3.00	0.565	3.548	13.902	0.26	4.232

B. Areal aspect

Drainage/ basin area, A (km ²)		Drainage density, D (km/km ²)		Constant of channel maintenance,		iency, F _s	Circulatory ratio, R _c
)		3			5
11.1623	0.89	0.89		1.13			0.73
Areal aspect contd							
Elongation ratio, R _e	Form factor, R _f	U	Inity shape factor	, R _u Water	rshed shape factor	, W _s	Drainage texture ratio, R _t
6	7		8		9		10
1.06	0.89		1.06		1.12		0.58
C. Relief aspect							
Total relief, H (m)	Relief ra R _h	itio,	Relative R	relief,	Ruggedness number, R _n	
1		2		3			4

0.002

0.02

0.0076

Kudri micro-watershed

A. Linear aspects

27

Stream order	Number of streams	Stream length	Stream length Mean stream length		Stream length ratio (R _L)		ratio (R _b)
	(N _u)	$(\mathbf{L}_{\mathbf{u}})$ (\mathbf{km})	$(\mathbf{L}_{\mathrm{sm}})$ (\mathbf{km})			I/II	II / III
1	2	3	4	5		6	
Ι	34	13.902	0.409				
II	11	8.14	0.740				
III	1	3.199	3.199	0.59	0.39	3.09	11.00

Mean bifurcation	Length of the overland	Ba	asin length (L _b)	Ba	asin perimeter	r (P)	Fineness ra	atio	Length of main channel	
ratio (R _{bm})	flow (L_g) (km)	(km) (km)			(km)		$(\mathbf{R}_{\mathrm{fn}})$		$(\mathbf{L}_{\mathbf{m}})$ (\mathbf{km})	
7	8		9		10		11	11 12		
7.05	0.172		3.124		17.549		0.18		5.761	
B. Areal aspect										
Drainage/ basin area, A	A Drainage density	, D	Constant of cha	nnel m	aintenance,	Strea	am frequency, I	T _s	Circulatory ratio, R _c	
(km ²)	(km/km ²)			С						
1	2		3		4		5			
8.69	2.91		().34	5.30		5.30	0.35		
Areal aspect contd	•									
Elongation ratio, R _e	Form factor, R _f	J	J nity shape factor	, R _u	Watersh	ed shap	e factor, W _s	D	Drainage texture ratio, R _t	
6	7		8			9	9		10	
1.06	0.89		1.06			1.73			2.62	
C. Relief aspect										
Total relief, H	(m) Relief ratio, R _h				Relative relie	ef, R _p		Rugg	edness number, R _n	
1	1 2				3				4	
60		0.0192	2		0.003				0.17	

Dundi-I micro-watershed

B. Linear aspects

Stream order	Number of streams	Stream length	Mean stream length	Stream length ratio (R _L)		Bifur	cation rati	0 (R _b)	
	(N _u)	$(\mathbf{L}_{\mathbf{u}})$ (\mathbf{km})	(\mathbf{L}_{sm}) (\mathbf{km})	II/I III/ II IV		IV/III	I/II	II/III	III/IV
1	2	3	4	5		4 5		6	
Ι	12	4.556	0.380						
II	3	3.71	1.237						
IV	1	3.336	3.336	0.81	0.00	0	4.00	0	0.00

Mean bifurcation ratio (R _{bm})	Length of the overland flow (L _g) (km)	Basin length (L _b) (km)	Basin perimeter (P) (km)	Fineness ratio (R _{fn})	Length of main channel (L _m) (km)
7	8	9	10	11	12
0	0.420	2.76	9.59	0.29	4.088

B. Areal aspect

Drainage/ basin area, A (km ²)	Dra	ainage density, D (km/km ²)	Constant of ch	annel mai C	intenance,	Stream free	quency, F _s	Circulatory ratio, R _c
1		2		3		4		5
6.94		1.19		0.84		2.1	6	0.95
Areal aspect contd								
Elongation ratio, R _e	Form fa	ctor, R _f	Unity shape factor	r, R _u	Watersh	ed shape facto	or, W _s	Drainage texture ratio, R _t
6		7	8			9		10
1.08		0.91	1.05			1.37		1.56
C. Relief aspect								
Total relief, H (m))	Relief 1	ratio, R _h	R	elative relie	ef, R _p	Rug	gedness number, R _n
1			2		3			4
34		0.0	0123		0.004			0.04

Dundi-II micro-watershed

A. Linear aspects

Stream order	Number of streams	Stream length	Mean stream length	Stream length ratio (R _L)		h Stream length ratio (R _L) Bifurcation ratio		ratio (R _b)
	(N _u)	$(\mathbf{L}_{\mathbf{u}})$ (\mathbf{km})	(\mathbf{L}_{sm}) (\mathbf{km})	II / I	III / II	I/II	II / III	
1	2	3	4	5	5	6		
Ι	16	6.703	0.419					
II	6	5.453	0.909					
III	1	0.338	0.338	0.81	0.06	2.67	6.00	

Linear aspects cotnd...

Mean bifurcation ratio (R _{bm})	Length of the overland flow (L _g) (km)	Basin length (L _b) (km)	Basin perimeter (P) (km)	Fineness ratio (R _{fn})	Length of main channel (L _m) (km)
7	8	9	10	11	12
4.33	0.286	2.868	10.418	0.28	2.073

B. Areal aspect

Drainage/ basin area, A (km ²)	Drainage density, D (km/km ²)	Constant of channel maintenance, C	Stream frequency, F _s	Circulatory ratio, R _c
1	2	3	4	5
7.14	1.75	0.57	3.22	0.83

Areal aspect contd...

Elongation ratio, R _e	Form factor, R _f	Unity shape factor, R _u	Watershed shape facto	r, W _s Drainage texture ratio, R _t
6	7	8	9	10
1.05	0.87	1.07	0.69	2.21
C. Relief aspect				
Total relief, H (m	1) Re	lief ratio, R _h	Relative relief, R _p	Ruggedness number, R _n
1		2	3	4
34		0.0119	0.003	0.06

Kurentha micro-watershed

A. Linear aspects

Stream order	Number of streams	Stream length	Mean stream length	Stream length ratio $(\mathbf{R}_{\mathbf{L}})$		Bifurcation ratio (R _b)	
	(N _u)	$(\mathbf{L}_{\mathbf{u}})$ (\mathbf{km})	(\mathbf{L}_{sm}) (\mathbf{km})	II / I	III / II	I/II	II / III
1	2	3	4	5	5	6	
Ι	23	10.601	0.461				
II	6	4.804	0.801				
III	1	1.624	1.624	0.45	0.34	3.83	6.00

Linear aspects cotnd...

Mean bifurcation ratio (R _{bm})	Length of the overland flow (L _g) (km)	Basin length (L _b) (km)	Basin perimeter (P) (km)	Fineness ratio (R _{fn})	Length of main channel (L_m) (km)
7	8	9	10	11	12
4.92	0.203	2.016	12.821	0.16	4.293

B. Areal aspect

Drainage/ basin area, A (km ²)	Drainage density, D (km/km ²)	Constant of channel m	aintenance,	Stream frequency, F	s Circulatory ratio, R _c
1	2	3		4	5
6.9077	2.47	0.41		4.34	0.53
Areal aspect contd					
Elongation ratio, R _e	Form factor, R _f	Unity shape factor, R _u	Watersh	ed shape factor, W _s	Drainage texture ratio, R _t
6	7	8		9	10
1.47	1.70	0.77		1.45	2.34

C. Relief aspect

Total relief, H (m)	Relief ratio, R _h	Relative relief, R_p	Ruggedness number, R _n
1	2	3	4
28	0.0139	0.002	0.07

Dakhaneswar micro-watershed

A. Linear aspects

Stream order	Number of streams	Stream length	Mean stream length	Stream length ratio (R _L)		Bifurcation ratio (R _b)		
	(N _u)	$(\mathbf{L}_{\mathbf{u}})$ (\mathbf{km})	$(\mathbf{L}_{\mathbf{sm}})$ (\mathbf{km})	II / I	III / II	I / II	II / III	
1	2	3	4	5		6	6	
Ι	11	6.406	0.582					
II	5	4.253	0.851					
III	1	1.861	1.861	0.66	0.44	2.20	5.00	

Linear aspects cotnd...

Mean bifurcation	Length of the overland	Basin length (L _b)	Basin perimeter (P)	Fineness ratio	Length of main channel
ratio (R _{bm})	flow (L_g) (km)	(km)	(km)	(R _{fn})	$(\mathbf{L}_{\mathbf{m}})$ (\mathbf{km})
7	8	9	10	11	12
3.60	0.316	4.523	15.65	0.29	3.268

B. Areal aspect

Drainage/ basin area, A	Drainage density, D	Constant of channel ma	Constant of channel maintenance,		Circulatory ratio, R _c
(km ²)	(km/km ²)	С			
1	2	3		4	5
7.908	1.58	0.63		2.15	0.41
Areal aspect contd					
Elongation ratio, R _e	Form factor, R _f	Unity shape factor, R _u	Watersh	ed shape factor, W _s	Drainage texture ratio, R _t
6	7	8	9		10
0.70	0.39	1.61	1.03		1.09

C. Relief aspect

Total relief, H (m)	Relief ratio, R _h	Relative relief, R_{p}	Ruggedness number, R _n
1	2	3	4
30	0.0066	0.002	0.05

Garhawai micro-watershed

A. Linear aspects

Stream order	Number of streams (N _u)	Stream length (L _u) (km)	Mean stream length (L _{sm}) (km)	Stream length ratio (R _L)	Bifurcation ratio (R _b)
				II / I	I / II
Ι	6	2.946	0.491	0.74	6.00
II	1	2.174	2.174		

Mean bifurcation ratio	Length of	f the overland	Ba	sin length (L _b)	B	asin perimete	r (P)	Fineness rati	io	Length of main channel	
$(\mathbf{R}_{\mathbf{bm}})$	flow	$(\mathbf{L}_{\mathbf{g}})$ (\mathbf{km})		(km) (km)			(R _{fn})		$(\mathbf{L}_{\mathbf{m}})$ (\mathbf{km})		
6.00		0.550		3.45		9.631		0.36		2.719	
B. Areal aspect											
Drainage/ basin area, A	Dra	inage density, l)	Constant of ch	annel m	aintenance,	Stream	frequency, F _s		Circulatory ratio, R _c	
(km ²)		(km/km^2)			С						
5.636		0.91			1.10			1.24		0.76	
Areal aspect contd											
Elongation ratio, R _e	Form	n factor, R _f	U	nity shape facto	r, R _u	Watersh	ed shape f	factor, W _s	Dı	rainage texture ratio, R _t	
0.78		0.47		1.45			1.01			0.73	
C. Relief aspect	C. Relief aspect										
Total relief, H (m	n)	Relie	ef rati	o, R _h	Relative relief , R _p		R	Ruggedness number, R _n			
28			0.0081			0.003			0.03		

Pahra micro-watershed

A. Linear aspects

Stream order	Number of streams	Stream length (L _u)	Mean stream length	Stream length ratio (R _L)		Bifurcation	ratio (R _b)
	(N _u)	(km)	(\mathbf{L}_{sm}) (\mathbf{km})	II/I III/II		I/II	II / III
1	2	3	4	5		6	
Ι	14	7.896	0.564				
II	3	2.497	0.832				
III	1	1.385	1.385	0.32	0.55	4.67	3.00

Linear aspects cotnd...

Mean bifurcation ratio (R _{bm})	Length of the overland flow (L _g) (km)	Basin length (L _b) (km)	Basin perimeter (P) (km)	Fineness ratio (R _{fn})	Length of main channel (L _m) (km)
7	8	9	10	11	12
3.83	0.284	3.74	11.842	0.32	2.995

B. Areal aspect

Drainage/ basin area, A (km ²)	Drainage density, D (km/km ²)	Constant of channel maintenance, C	Stream frequency, F _s	Circulatory ratio, R_c
1	2	3	4	5
6.69	1.76	0.57	2.69	0.60

Areal aspect contd...

Elongation ratio, R _e	Form factor, R _f	Unity shape factor, R _u	Watershed shape factor, W _s	Drainage texture ratio, R _t
6	7	8	9	10
0.78	0.48	1.45	1.03	1.52

C. Relief aspect

Total relief, H (m)	Relief ratio, R_h	Relative relief, R_p	Ruggedness number, R _n
1	2	3	4
31	0.0083	0.003	0.05

Dhanaura micro-watershed

A. Linear aspects

Stream order	Number of streams	Stream lengthMean stream lengthStream length ratio (RL)Bifurcation ratio			Stream length ratio (R _L)			cation rati	o (R _b)
	(N _u)	$(\mathbf{L}_{\mathbf{u}})$ (\mathbf{km})	(\mathbf{L}_{sm}) (\mathbf{km})	II/I	III/II	IV/III	I/II	II/III	III/IV
1	2	3	4		5			6	
Ι	8	4.666	0.583						
II	3	6.142	2.047						
III	2	3.765	1.883						
IV	1	0.202	0.202	1.32	0.61	0.05	2.67	1.50	2.00

Linear aspects cotnd...

Mean bifurcation	Length of the overland	Basin length (L _b)	Basin perimeter (P)	Fineness ratio	Length of main channel
ratio (R _{bm})	flow (L_g) (km)	(km)	(km)	(R _{fn})	$(\mathbf{L}_{\mathbf{m}})$ (\mathbf{km})
7	8	9	10	11	12
2.06	0.388	4.17	17.859	0.23	8.42

B. Areal aspect

Drainage/ basin area, A (km ²)	Drainage density, D (km/km ²)	Constant of channel maintenance, C	Stream frequency, F _s	Circulatory ratio, R_c
1	2	3	4	5
11.31	1.29	0.78	1.15	0.45

Areal aspect contd...

Elongation ratio, R _e	Form factor, R _f	Unity shape factor, R _u	Watershed shape factor, W _s	Drainage texture ratio, R _t
6	7	8	9	10
0.91	0.65	1.24	2.22	0.73

C. Relief aspect

Total relief, H (m)	Relief ratio, R _h	Relative relief , R _p	Ruggedness number, R _n
1	2	3	4
33	0.0079	0.002	0.04

2.6 Soil and Land Capability Classification

The total area of the project is 7136.92 ha, out of which 5970.00 ha. is under treatment. Most of the soil is black (*Mar, Kabar & Mar Kabar* mixed). The nutritional health of soil is very poor due to severe erosion from the watershed. The nutrient status of the micro-watershed is depicted in Table 2.8. The land capability classification of each micro-watershed was also studied and presented in individual DPR of micro-watershed.

S. No.	Name of Village	Type of Soil	рН	Organic Carbon	Available Phosphorus	Available Potash
				%	kg/ha	kg/ha
1	Maletha	Mar/Kabar mixed	7.1	0.20	15.60	258.35
		Purwa	7.2	0.23	16.35	262.90
2	Kudri	Mar/Kabar mixed	7.3	0.33	22.52	279.00
		Mar	7.5	0.36	23.50	284.80
3	Dundi-I	Kabar	7.1	0.21	17.50	278.35
		Purwa	7.2	0.24	18.25	275.90
4	Dundi-II	Mar	7.4	0.27	19.20	280.50
		Kabar	7.2	0.34	22.32	260.00
5.	Kurentha	Mar/Kabar mixed	7.7	0.25	23.00	285.80
		Purwa	6.9	0.20	9.35	256.90
6	Dakhaneswar	Kabar	7.0	0.22	11.30	261.50
		Mar/Kabar mixed	7.2	0.25	13.60	272.35
7.	Garhawai	Mar/Kabar mixed	7.3	0.30	15.52	279.00
		Purwa	7.5	0.35	16.50	284.80
8	Pahra	Purwa	7.2	0.22	17.60	277.35
9	Dhanaura	Mar/Kabar mixed	7.3	0.33	22.52	261.00

Table 2.8: Nutrient status of soils in IWMP –V project	atus of soils in IWMP –V p	oject
--	----------------------------	-------

BASELINE SURVEY AND PARTICIPATORY RURAL APPRAISAL

Participatory rural appraisal (PRA) is a tool to appraise the socio-economic conditions along with all kind of resources available in the watershed through the active participation of the villagers. There are several tools and techniques of PRA. The PRA of Maletha, Kudri, Dundi-II, Kurentha, Dakhaneswar, Garhawai, Pahra and Dhanaura micro-watershed was conducted and described in the subsequent sections.

3.1. Social-Economic Analysis

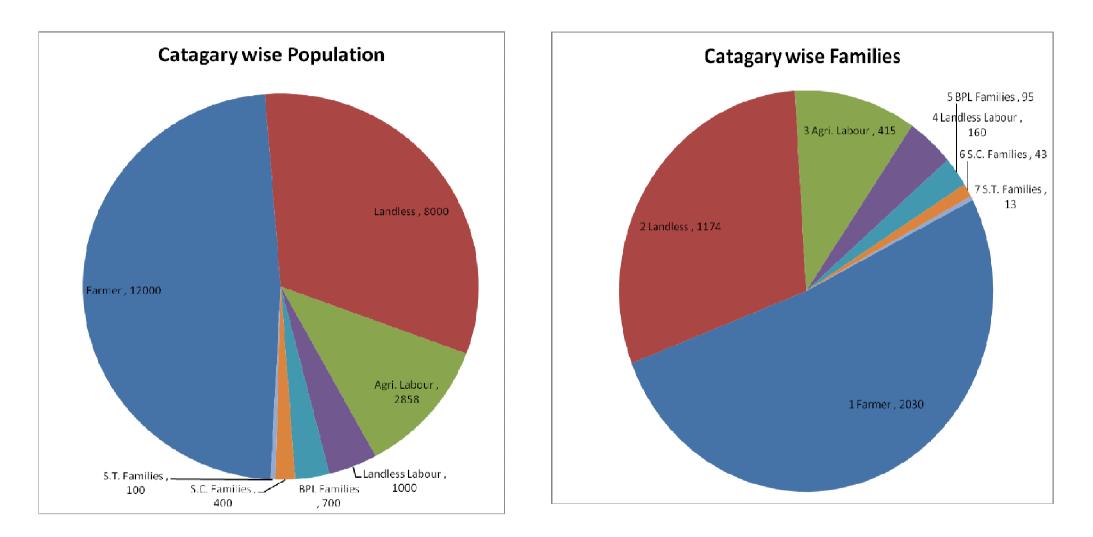
The Maletha, Kudri, Dundi-II, Kurentha, Dakhaneswar, Garhawai, Pahra and Dhanaura micro-watershed mainly dominated by OBC and schedule caste.

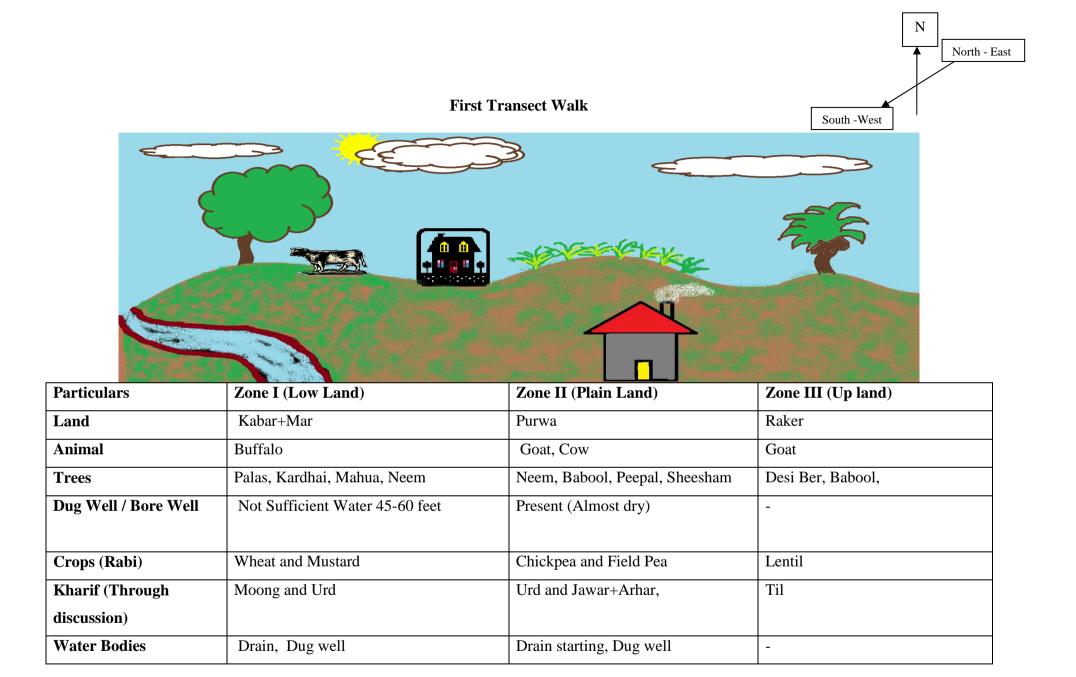
Table 3.1: Demographic pattern of IWMP-V Project

S.No	Name of MWS		Population				
		Male	Female	Children	Total		
1	Maletha	800	700	1800	3300	550	
2	Kudri	750	605	1585	2940	490	
3	Dundi-I	780	640	1115	2535	390	
4	Dundi-II	700	610	1290	2600	400	
5	Kurentha	720	660	1090	2470	380	
6	Dakhaneswar	700	620	1508	2828	435	
7	Garhawai	510	420	1085	2015	310	
8	Pahra	700	640	935	2275	345	
9	Dhanaura	1135	980	1980	4095	630	

It is apparent from the social profile that the micro-watershed is inhabited by different caste and class. In the micro-watershed, big and medium farmers have their pucca house while majority of marginal and small farmers have kachha houses. There was no definite pattern of settlement based on housing structure. The watershed dwellers get drinking water from hand pumps and face severe scarcity during summer. It was observed that the small and marginal farmers are not conscious about the education of children. The literacy of the MWS villages is very low.

The main occupation of the MWS dwellers is agriculture and animal husbandry; the landless families generate income for their livelihood mainly from labour. Category wise population and no. of families were depicted in Fig 3.1, however, migration from the project is depicted in Table 3.2.




Fig 3.1: Category wise population and no. of families

Sr. No.	Name of	Total		Migration	l	Ν	Migration Day	'S	Reason for	Income during
	village	population	Male	Female	Total	<3 months	3-5 months	>5 months	migration	migration / month/head
1	Maletha	3300	130	55	185	105	45	35	Due to drought	4800 to 5500
2	Kudri	2940	120	58	178	75	55	48	Due to drought	4800 to 5500
3	Dundi-I	2535	60	32	92	32	35	25	Due to drought	4800 to 5500
4	Dundi-II	2600	75	36	111	54	30	27	Due to drought	4800 to 5500
5.	Kurentha	2470	90	40	130	65	43	21	Due to drought	4800 to 5500
6.	Dakhaneswar	2828	92	40	132	60	50	32	Due to drought	4800 to 5500
7.	Garhawai	2015	80	42	122	62	35	25	Due to drought	4800 to 5500
8	Pahra	2275	110	53	163	75	65	23	Due to drought	4800 to 5500
9	Dhanaura	4095	150	70	220	95	75	50	Due to drought	4800 to 5500

Table 3.2: Migration status in the watershed during 2010-11

3.2 Transect Walk

The main objective of the transect is to understand the major land uses, terrain, water resources, natural vegetation and different ecological zones by observing, interacting and discussing with the key informants, while walking in the different directions in all micro-watersheds. Two transect walk was taken with the key informants and the zone wise information are as follows:

North - West

second Transect Walk

Particulars	Zone I (Up land)	Zone II (Plain Land)	Zone III (Low Land)
Land	Purwa with kankar	Purwa	Kabar+Mar
Animal	Goat	Goat, Cow	Buffalo,Cow
Trees	Desi Ber, Babool,	Neem, Peepal Semal, Sheesham	Palas, Kardhai, Mahua, Neem
Dug Well / Bore Well	-	Present (Almost dry)	Not SufficientWater 40-45 feet
Crops (Rabi)	Lentil, chickpea	Chickpea, Field Pea, Linseed	Wheat, Barley
Kharif (Through discussion)	Til	Til, Urd, Jawar+Arhar,	Moong/Urd, Sorghum + Arhar
Water Bodies	- Dug well (Almost Dry)	Drain starting, Dug well	Drain, Dug well

Fig. 3.3: Severe erosion in the watershed

Fig. 3.2: Deep water table in open shallow dug well in the watershed

Fig. 3.2: Deep water table in open shallow dug well in the watershed

Fig. 3.3: Severe erosion in the watershed

3.3 Time Line Analysis

3.3.1 General time line

In IWMP – V Prpject development of major temporal events were as follows:

Sr. No.	Development Activity	Year
1	Establishment of Maletha, Kudri, Dundi-I, Dundi-II, Kurentha, Dakhaneswar, Garhawai, Pahra and	Around 15 th to 18 th Century
	Dhanaura	
2	Opening of Primary school and Junior High school	1982 to 1990
3	Introduction of Tractor	1995
4	First Tube well	1987
5	First Motor cycle	1986
6	T.V. & D.V.D. player introduced	2003
7	Electricity in the villages	2007
8	Introduction of Mobile phone	2008

3.3.2 Agriculture and animal husbandry time line

Sr. No.	Particular	Year
	Agriculture	
1	Growing of pulses and Oilseeds	Since starting
2	Durum wheat	Since starting
3	Growing of wheat	1980
4.	Introduction of mixed cropping	1985
	Animal Husbandry	
1	Milking animals	Since starting
2	Introduction of cross-breed cows	1990
3	Goat	1992
4	Attack of diseases in animals	1994

3.4 Seasonality

3.4.1 Climate: The climate of IWMP –V Project is characterized by a hot dry summer and cold winter and is marked for high variability of rainfall year to year. There are primarily four seasons: – Dry Summer season – from March to May i.e. before advent of monsoon, moist summer season – from June to September (Monsoon) transition period - in October and November, which is the post monsoon period, and winter season – from December to February. August is the wettest month followed by July.

3.4.2 Crop and cropping pattern: The major crops cultivated in the micro-watershed area are lentil, chickpea, durum wheat, field pea and wheat and linseed mixed with mustard in *rabi* season. Out of total cultivated area of micro-watershed pulses alone occupied 79 per cent area. Rest of the area is occupied by wheat and oilseed crops.

3.4.3 Crop rotation: The following major crop rotation are being followed/

Sorghum + Arhar (duration 250 days) Urd – Durum wheat

Urd/Moong - Field pea

Moong/Urd – Lentil + Linseed (Mixed)

Til - Chickpea / filed pea

Moong/urd – Wheat (Mustard mixed)

3.4.4 Pulses production calendar: Pulse crops cover maximum area in IWMP -V. During *kharif* season urd and moong are major pulse crop sown during monsoon season and entirely depends on rain. During Rabi season major pulses are lentil, chickpea and field pea which was grown by the farmers on conserved moisture during rainy season. The performance of *rabi* crops entirely depends on winter rains as the irrigation by open shallow dug wells is limited due to several factors. Farmers start preparation for *rabi* crop from the month October.

No

No

No

No

Dec.

Rahi Kharif Rabi Crop cutting & Threshing Plant Protection No Irrigation No No Weed Management Tillage Nirai & Gudai Land treatment No Seed Treatment No Sowing \leq \sim Use Fertilizer Land Preparation February April March Mav Julv Oct. Nov. January June August Sept.

Crop calendar of Lentil at IWMP –V

3.5 Availability of Fodder

Animal condition in IWMP –V Project was not found good due to unavailability of enough green fodder. It was observed that farmers of micro-watershed do not grow green fodder except sorghum in between the arhar crop during *kharif* season. During monsoon period animals freely grazed on the fields and in winter they fed on dry stems of sorghum and wheat straw (Annapratha).

3.6 Demand of Energy for Agriculture

Maximum energy is required in agriculture for land preparation and for life saving irrigation followed by harvesting and threshing. Maximum fuel requirement is observed in the month of October followed by February and March. For preparation of food and other domestic preparation farmers use cow dung (upla) and fuel wood of different trees as well as stem of pigeon pea. Some rich families also use LPG gas for food preparation.

3.7 Labour Requirement

Labour requirement was highest for agriculture operations in the month of February and March followed by September and October. Minimum labour was required in the month of August, December, January, May and June. Due to mono-cropping less labour requirement is observed in the micro watershed.

Expenditure was relatively highest in the month of October followed by February and March with the corresponding increase in demand of agriculture production activities viz. fuel for agriculture, fertilizers, seeds and labour credit need.

3.8 Changing Trends

The analysis of changing trend revealed that the population, number of crops, fertilizer application follow increasing trend, while cropping intensity, water availability and milk production are in decreasing trend mainly due to deficit rainfall and low water holding capacity of soil in the watershed. Detailed trend for past, present and future is depicted in the Table 3.4.

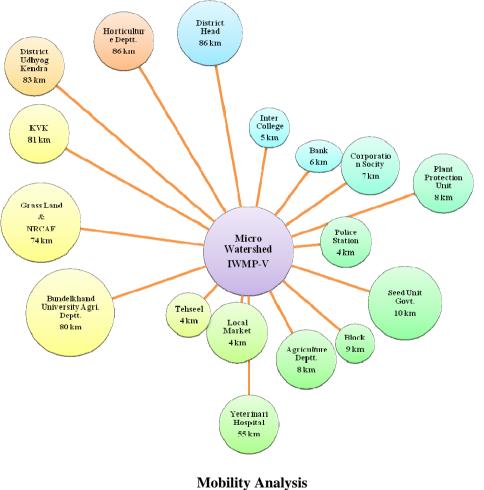
Particulars	Past	Present	Future
Population	***	****	****
Water Availability	00000	00	00000
Number of crops	###	#####	########
Use of fertilizers	@@	@@@@	@@
Use of Bio fertilizers	Nil	Nil	++++
Cropping Intensity	\$\$\$	\$\$	\$\$\$\$
Food Quality		$\rightarrow \rightarrow$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Agriculture Production			
Problems of Crops	00	0000	0000
No. of Animals	***	****	****
Milk Production	$\diamond \diamond \diamond$	$\diamond \diamond$	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Table 3.3 Changing trends in the micro-watershed

Milk availability	$\triangle \triangle \triangle \triangle$	ΔΔ	$\Delta \Delta \Delta \Delta \Delta$
Electricity	-	**	****
Technical Knowledge Availability	-		
No. of Tractor	Φ	$\oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus \oplus$
Employment	$\Diamond \Diamond$	$ \Diamond \Diamond \Diamond \rangle$	$\longleftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$
Orchards	-	-	#####
Vegetable Production		Δ	$\Delta \Delta \Delta$
Grass Land/Fodder cultivation	++++++	+++	++++

3.9 Family Livelihood Analysis

Livelihood analysis is a helpful tool to analyse farmer's aptitude and deciding their future plan. In our study we have categorised the farmers in the four groups on the basis of their income generated from different sources. The major source of income of big farmers is agriculture and few members of such family are also employed and generated extra income to his family kitty. For second groups 80 per cent income came from agriculture and rest 20 per cent from animal husbandry and other enterprises. Likewise the poor groups arranged their livelihood through *batai* by big farmers (50%) and rest 50% came from their own agriculture and animal husbandry specially goat rearing. However, very poor groups arranged their livelihood mainly from wages.


Strength	
1.	Community are willing to make joint efforts for the development
2.	Average land holding is high i.e. 2.0 ha
3.	Average animal population per family is 5. It indicates greater possibilities of organic farming.
4.	Sufficient work force is available locally.
Weaknes	SS
1	Less vegetative cover resulted into high runoff, soil and nutrient loss
2	Crisis of water for drinking and irrigation due to dependency on perched water

3.10 SWOT Analysis for Watershed Development Programme

3	Very poor cropping intensity (30-40%) during <i>kharif</i> season
4.	Health of the soil is poor to very poor due to severe erosion.
5.	High frequency of irrigation due to low water holding capacity
6.	Multidirectional slopes creates hurdles in applying conservation techniques
7.	Majority of the farming community are laggard in adopting new technologies
8.	Grazing / browsing of crops by stray cattle / goat (Annapratha).
Opportu	nities
1.	Opportunity for increasing cropping intensity during <i>kharif</i> season
2.	Scope for diversification and alternate land use which provides regular employment
3.	High opportunity of breed improvement and organic farming
	Presence of extensive ephemeral drain provides opportunity for water harvesting
4.	Greater scope of increasing water use efficiency by adopting micro irrigation as majority of the farmers have their own well and pumping
	system
5.	Sufficient availability of forest as well as community lands and traditional knowledge of goatary provides opportunity of livelihoods for
	landless families
6.	Opportunity of dairy industry
Threats	
1.	Non availability of markets
2.	Presence of granite at a depth of 10 to 100 feet provides less opportunity of water storage and it may creates chaos if water resources not
	managed properly
3.	High incidences of theft for all kinds of tools and machineries related to agriculture

3.11 Village – Institution Linkages 3.11.1 Mobility analysis

The institution visited by the farmers frequently for their different enterprises are cooperative societies for fertilizers, Block Development Office, plant protection unit, veterinary hospital, electricity department, police station and agriculture department etc. The distances of different institution are given as follows:

3.11.2 Venn Diagram

Venn diagram shows the presence of institution within and outside of micro-watershed and services given by these institutions to the farmers of micro watershed. The micro-watershed has good linkage with bank, market, mandi and department of Land Development and Water Resource. Though the farmers considered agriculture extension provider and hospital as an important institution but their services are relatively poor. Institution like seed store, development block, registration of societies, agriculture department are less important to the farmers but they are providing better services than police station and veterinary hospital. Other institution like Bundelkhand University, Krishi Vigyan Kendra, National Research Centre for Agro forestry, Indian Grassland and Fodder Research Institute, Jhansi and Minor Irrigation can play significant role than tehsil and block.

Venn Diagram

3.12 Decision Analysis

3.12.1 Matrix ranking

Choice and priority of farmers can be analyzed by matrix ranking. Farmers are cultivating different types of crops viz. lentil, chickpea, field pea, durum wheat, wheat, linseed and mustard/rai in *rabi* season and urd, moong, arhar + sorghum, til and sorghum in *kharif* season. Lentil crop was ranked first in *rabi* season followed by chickpea and field pea, while in *kharif* season arhar + sorghum have the second ranking followed by sesame as fourth ranking. Mustard and linseed crop grown by farmers as mixed with other crop. Lentil crop was preferred by the farmers of micro-watershed due to the black soil which yields better under the conserved moisture. Farmers are cultivating local varieties of lentil called *Malka*. Second preferred crop was chickpea due to black soil with totally depend on rain. The promising varieties of chickpea were *Radhey* and *Awarodhi*. Wilt is the main problem of lentil and chickpea crop in the command area. However, arhar + sorghum preferred by the farmers as second crop in the rotation. It is clear from the analysis that the farmers don't take risk of growing crops as single crop.

Women of the micro-watershed show their priority to knitting, weaving and tailoring. Among the different criterion for deciding suitable enterprises, easily salable items ranked first followed by self dependency and low cost, less labour requiring.

Rural youth of the micro-watershed show their priority to goat rearing followed by poultry, dairy and seed production, organic farming, rabbit, vermi compost unit and nursery unit respectively. Among the different criterion for deciding suitable enterprises, less time taking ranked first followed by self dependency, more marketable and less labour requiring.

Сгор	Lentil	Chickpea	Field Pea	Durum Wheat	Wheat	Arhar + Sorghum	Sesamum	Mustard / Rai	Linseed
Standard									
More Profit	5	7	7	6	4	6	6	4	5
Suitability for rainfed condition	9	8	8	5	3	8	4	6	7
Less Insect/Pest & diseases	6	6	5	6	4	7	7	7	6
Less risk	8	8	7	5	5	8	9	5	5
Less labour	9	7	7	8	6	7	8	4	6
Less weeds	8	6	6	7	5	9	7	5	5
No Irrigation required	9	7	5	6	3	8	6	6	6
Total	54	49	45	43	30	53	47	37	40
Rank	Ι	III	V	VI	IX	II	IV	VIII	VII

Priority of crops (Maximum ranking is 10 points)

Livelihood interest of farm women (Max. 10 point)

Livelihood options	Tailoring Stitching Weaving	Agarbatti / Candle & Dona Pattal,	Preservation Fruit & vegetable	Goat rearing	Poultry	Nursery	Organic Manure	Rabbit farming	Ranking
Standard		Rope making							
Self dependency	6	6	7	7	7	3	5	6	III
More sellable	8	4	7	5	8	7	7	7	Ι
Less Labour	6	5	6	6	5	4	6	8	IV
Low cost	8	7	6	7	6	6	5	6	II
Less Time taking	5	5	4	6	5	5	5	5	V
Ranking	Ι	VI	IV	III	III	VII	V	II	

Livelihood interest of rural youth (Max. 10 point)

Livelihood options	Vermi unit	Seed production / Bank	Dairy (Cow Buffaloes)	Goat rearing	Poultry	Nursery	Organic Manure	Rabbit farming	Ranking
Standard									
Self dependency	6	7	7	8	7	5	6	6	II
More marketable	7	6	7	6	8	4	4	5	III
Less Labour	5	5	6	8	5	6	5	4	IV
Low cost	4	7	4	7	7	5	3	5	V
Less Time taking	7	6	7	9	8	4	7	7	I
Ranking	VI	III	III	I	II	VII	IV	V	

3.13 Rural People's Knowledge

Major occupation of the micro-watershed is agriculture and animal husbandry and several indigenous technical know how had been practiced by the villagers of micro-watershed which are listed below. Wide scale adoption of the ITKs in a participatory mode will help to increase and stabilize production in the micro-watershed.

A. In-situ moisture conservation practices

Indigenous/Local knowledge	Technical specification/ Improvements
• Summer ploughing is generally done	• Summer ploughing is generally done across the slope of the field and sometimes along the slope
• Summer ploughing with desi plough.	in the month of April and May for increasing porosity and creating mini surface structure like ridge and furrows
	• There is less runoff and soil loss due to more infiltration and less evaporation due to breaking of the capillaries and pulverization of soil.
	• Availability of plant nutrients increases due to decomposition of crop residues, weeds etc.
	• The summer ploughing with either <i>desi</i> plough (99%) or tractor drawn cultivator (1%) is one of
	the most common practices in rainfed farming areas of the micro watershed.
• <i>Kulying</i> is very common during rabi	• <i>Kuly</i> is a bullock drawn blade harrow with blade of 75-90 cm length and weight of 15-20 kg. It
season: tillage operation by kuly for field	can cover 1.5 ha land per day and has service life of 8 to 10 years. It carried out at a depth of 5-7 cm at
preparation of <i>rabi</i> crops like chickpea, lentil etc.	8-10 days interval at least 5 to 6 times prior to sowing of <i>rabi</i> crops.
Kulying is started in kharif fallow land just after the	• Due to repetitive ploughing, the soil is maintained good tilth and weeds are controlled.
recession of monsoon.	• <i>Kulying</i> reduces evaporation losses and maintains soil moisture level by breaking the capillaries
	and pulverization of soil.
• <i>Kulphaing</i> is a common inter-culture	• <i>Kulphaing</i> is generally done once or twice during crop growing season, when there is a dry
operation carried out by kulpha in kharif crops	spell.
cultivated in black series soils.	• <i>Kulpha</i> is modified form of <i>kuly</i> for intercultural operation and operated by a pair of bullocks. Generally, two <i>kulphas</i> are operated simultaneously to cover more area per unit time.
	• The working depth varies from 3-5 cm depending upon the soil condition at the time of
	operation. It can be manufactured by village artisans and weighs 15-20 kg.
• Criss-cross ploughing done twice, firstly	• The main objectives of criss-cross ploughing is to leave no part of field unploughed, as
along the slope and secondly across the slope.	unidirectional ploughing often leaves some unploughed land between two adjacent furrows, and create a
	number of criss-cross mini surface water storage structure, which help in increasing the intake
	 opportunity time of water infiltrate into the soil, improve soil moisture and reduce runoff from the field. At the time of ploughing, farmers deivides the whole field into a number of small blocks. The
	number and size depends upon the size of field and number of ploughs working in the field.
	• The ploughing is started from the border of field and goes towards centre till a block/field is
	covered.
	• Criss-cross ploughing is a very old indigenous tillage practice in the region, which helps in
	reducing runoff and soil loss.
• Bundhi (Earthen bund): formerly farmers	• These structures are generally used to retain upslope water and silt. Retention of water behind

of MWS area were doing this work, now this is not	the bundhi increases infiltration in the field by enhancing opportunity time, increase soil moisture
in working	regime and reduces runoff and soil loss.
	• If <i>bundhi</i> is intact, there is deposition of silt behind the <i>bundhi</i> due to retension of surface
	runoff, which converts undulating field into nearly plain/level land, and the reclaimed land becomes
	more fertile.
	• <i>Bundhies</i> must be strengthened with grasses and legumes having good soil binding capacity like
	Dichanthium annulatum, Cenchrus ciliaris, Cynodon dectylon, Stylosanthes hamata, etc. These plants
	apart from stabilizing the bundhies are also very good source of fodder for the cattle.
• Pucca Bandha (Stone): Old pucca bandhas	• MWS programme IWMP will executes this work.
were visible in the area with poor condition, now	• Like <i>bundhies, bandhas</i> retain water and silt, enable uniform distribution of rainwater, which
this is not in working	increases infiltration in the field by enhancing opportunity time, increases soil moisture regime, reduces
	runoff and soil loss, converts undulating field into nearly plain/level land, and makes the land fertile.
	• Most of these structures are unscientifically constructed, which has resulted in side cutting and
	damage.

B. Runoff management practices

Indigenous/Local knowledge	Technical specification/ Improvement / Interventions				
• Talab (Pond)	• The structure harvested huge amount of surface runoff, otherwise going waste, and thereby				
• Talab is an embankment type pond of					
various sizes (smaller ponds called <i>talai</i>)	water demand for irrigation, animal and domestic consumptions.				
constructed near human settlements or at	• Bed silt of the <i>talabs/talais</i> can be used for soil fertility improvement and				
depression site of village.	construction/repair/maintenance of mud houses by the farmers.				
• Sagar (Submergence bund) are large	č				
submergence bunds constructed as a barrier across	recharge the soil profile. The harvested water is either lost through seepage and evaporation or it is				
the slope of catchment with a provision of <i>nikas</i>					
(sluice) for removing excess water.	• Deposition of fertile soil and increase in moisture regime gives 70-80% higher <i>rabi</i> crop yields				
	as compare to adjoining land without submergence bund.				
	MWS programme IWMP will executes this work.				

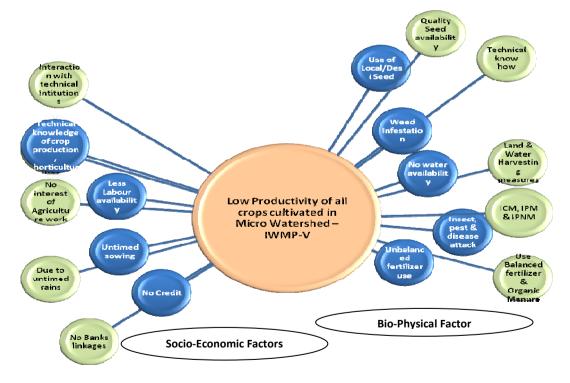
C. Crop production practices and animal husbandry

Indigenous/Local knowledge	Technical specification/ Improvement / Interventions
• Mixed cropping: lentil, chickpea, durum	• Crops area growing under set row system without any scientific approach.
wheat and wheat crop sown mixed with linseed and	• Crops should be grown under row system.
mustard in <i>rabi</i> .	• An optimum plant density of different crops should be maintained.
• Sorghum and Arhar mixed crop in <i>kharif</i> .	
• Use of Ghurey ki khad (un-decomposed	
FYM)	and disease incidence on the crop.
	• Use of Vermi-compost, NADEP compost, green manuring etc. should be encouraged.
• Shaking of plant (Pigeonpea)	• During attack of <i>H. armigera</i> farmers shaking the plant.
• Use of Neem leaf & Kernel suspension	• During the attack of different insect/pest on crops they use suspension of neem leaf and kernel
	as well.
• Use of neem leaf in the storage of pulses	• Neem leaf suspension 10 kg leaf + 20 lit. water boiled when water remains 10 kg. This
and cereals	suspension used to treat the bags, room, windows and door where grains to be stored. Leaf of neem
	stored in shed for 10-15 days and used for grain storage approximate 50 to 100 gm per quintal of grain.
	• Grains should be fully dry and have only 10-12% moisture in it.
Animal husbandry	• They use 8 badi ilaichi (large cardamum) with 100 gm gur and give two doses, one in the
- Use of 8 Badi Ilaichi for adult buffaloes	morning and one in the evening.
and cow for curing of fever.	
- Rapeseed/Mustard seed used with	• 100 gm Rapeseed/Mustard seed crushed with stone and mixed in 2 lit. curd and matha for
curd/matha for gas/aphara in animals	aphara and gas problem.

3.14 Problem Identification

During the process of collecting the important information related to the micro-watershed village's socio-economic status and different enterprises practiced by the villagers, certain problems which have adverse effect both directly and indirectly on their economy are identified after having detailed discussion with participatory farmers groups.

3.14.1 Prioritization of problems

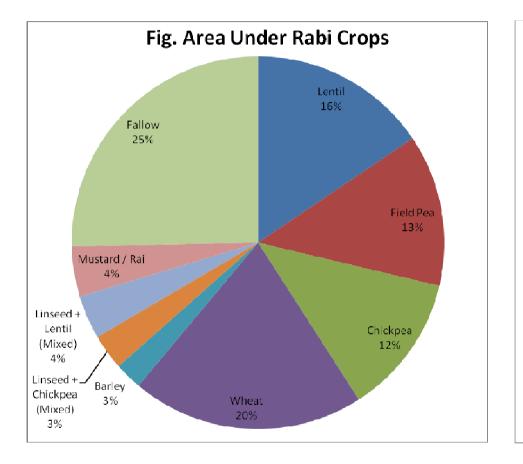

Major factor responsible for low yield of all crops of micro-watershed

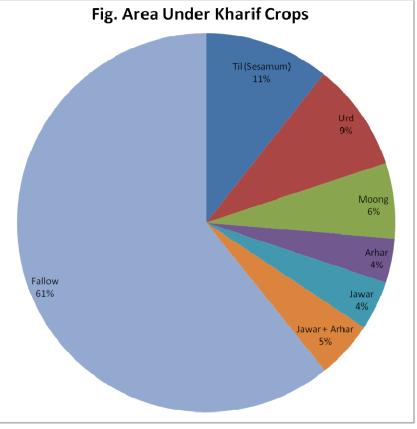
- 1. Less water availability
- 2. Undulating topography
- 3. Low fertility due to severe water erosion
- 4. Uncertain and erratic rainfall

- 5. Low water holding capacity of soils
- 6. Heavy weed problem at initial stage of crop growth particularly in *kharif*
- 7. Insect, pest and disease problem
- 8. Imbalance use of fertilizers
- 9. Use of local and desi varieties
- 10. Rat problem at maturity stage

3.14.2 Problem – cause analysis

Lentil is the major crop of the micro-watershed and as such cumulative pulses covers about 79 per cent area. During discussion it was narrated by the farmers of the area that production of lentil and other pulse crops gradually reduced due to the low water availability. Problem mentioned by the farmers were heavy weed infestation at initial stage, wilt problem in all pulses, use of local varieties, insects and pest, imbalance use of fertilizers, etc. Amongst these factors, low water availability is mainly responsible for low yield of all crops. There could be many more problems as mentioned above but of less significance.




Problem Cause Analysis

3.14.3 Area, production and productivity of kharif/ rabi/ summer season Crop Area, production and productivity of different crops in the watershed is shown in Table 3.1.

Table 3.4: Area	nroduction and	productivity	of kharif/rah	/summer season crop	as
1 abit 5.7. Al ta	production and	productivity	\mathbf{v}	summer season er op	19

S.No.	Name of Crop (Season wise)	Area (ha)	Production (quintal)	Productivity q/ha
1	Til (Sesamum)	760.00	1292.00	1.7
2	Urd	660.00	2244.00	3.4
3	Moong	460.00	1426.00	3.1
4	Arhar	270.00	1701.00	6.3
5	Jawar	300.00	1440.00	4.8
6	Jawar + Arhar	350.00	2660.00	7.6
	Total	2800.0	10763.00	
1	Lentil	1110.00	6271.50	5.65
2	Field Pea	940.00	6815.00	7.25
3	Chickpea	870.00	5533.20	6.36
4	Wheat	1440.00 27000.00		18.75
5	Barley	170.00	2924.00	17.2
6	Linseed + Chickpea (Mixed)	220.00	1727.00	7.85
7	Linseed + Lentil (Mixed)	270.00	1741.50	6.45
8	Mustard / Rai	310.00	1395.00	4.5
	Total	5330.00	53407.20	
	Single crop Area	3770.00		
	Double crop area	2180.00		
	Cropping Intensity		114.55	
3.	Summer Season	Nil	Nil	Nil
4	Home Stead Plantation of Vegetables for domestic use	Round the ye	ear some domestic vegetable growing habit	present among the farmers
	(Cucurbits, Cole crops, Egg Plant, Tomato, Potato etc)	45.00	3200.00	71.11

3.15Analysis of ProblemTable 3.5: Analysis of Problems with Regard to Existing Farming System (EFS)

Sl. No.	Type of enterprises/ commodities	Combi-nation of enter-prises in EFS (P/S/T)	Specific problems with each enterprise	No. of affected persons (%)	Proposed solution	Reasons for non- adoption of proposed solution	Action
1.	Agricultural crops - Irrigated Wheat - Rainfed Wheat Durum Wheat Lentil Field Pea Linseed Mustard Arhar Sorghum Urd Moong Til	Р	Less water availability Low nutrient status affect all crop production Use of old varieties Disease/Insect pest infestation Weed infestation	95	Improved method of crop production & resource conservation	Lack of Interest, Lack of Resource Management	Training & demonstration, Organizing of field days for improved varieties and cultivation practices
2.	Horticultural crops - Orchards - Vegetables - Floriculture	S	No Planned Orchards / Vegetable / Floriculture	-	-	-	Need Intensification
3.	Animal husbandry - Cows - Buffalows - Sheep	S S	Breed degradation, Anestrous problem, and low productivity of animals and fodder	80	Breed improvement through AI, feeding of	Lack of Interest Lack of Resource Management	Training & demonstrations

	- Goat	S			minerals		
	- Pigs				mixture,		
					Fodder		
					cultivation		
4.	Fisheries	-	-	-	-	-	-
5.	Sericulture	-	-	-	-	-	-
6.	Poultry	-	-	-	-	-	-
7.	Bee keeping		-	-	-	-	-
8.	Duckeries	-	-	-	-	-	-
9.	Agriculture labour	Т	Unskilled labour	-	-	-	-
			depends on Agriculture				
			land				
10.	Any other	-	-	-	-	-	-

P= Primary, S = Secondary, T = Tertiary

INSTITUTIONAL BUILDING AND PROJECT MANAGEMENT

4.1 Project Implementing Agency

The Project Implementing Agency (PIA) is Soil Conservation Officer, Department of Land Development and Water Resources, IWMP, Moth, Jhansi. The PIA was given responsibility to develop the micro-watershed by District Watershed Development Unit (DWDU) and State Level Nodal Agency (SLNA) considering its vast experiences in handling land and water management issues in the region. The PIA has well experienced, trained and sufficient staff to handle the watershed management programme efficiently. Most of the staff of PIA has exposure of several watershed projects including Garhkundar-Dabar watershed, which is successfully implemented by NRCAF, Jhansi in Tikamagarh district of Bundelkhand region and identified by Govt. of India as one of the most successful model of watershed in the country. In addition the PIA has access for technical backstopping from the ICAR viz. IGFRI, NRCAF and KVK located at Jhansi. Details of PIA are presented in subsequent section.

Sr. No.	Particulars of PIA	
1	Name of organization	Department of Land Development and Water Resources, Uttar Pradesh
2	Designation & Address	Bhoomi Sanrakshan Adhikari, IWMP –V
		District -Jhansi
3	Telephone/Mobil No.	BSA- 09450067749
		JE - 09458208143
4	Fax	NA
5	E-mail	NA

Table- 4.1: Details of Project Implementing Agency

Table- 4.2.: Details of Staff at Project Implementing Agency

Sr. No.	Name	Designation	Experience (Years)
1	Shri Radhey Ram	B.S.A.	28
2	Shri Moti Singh	Junior Engineer	26
3	Shri Baburam Verma	Accountant	25
4	Shri Suresh Singh	Draftman	26
5	Shri Rajpal Singh	Tracer	25
6	Shri Ramakant Pandey	Jiledar	25

7	Shri Vijay Veer	Munsi	20
8	Shri Shyam Manohar Pandey	A.S.C.I.	20
9	Shri Mathura Prasad Dixit	A.S.C.I.	22
10	Shri Prakash Narayan Yadav	Sheenchpal Supervisor	20
11	Shri Rajesh Babu Sachan	Sheenchpal	22
12	Shri Jiya Lal	Sheenchpal	20
13	Shri Rajendra Singh	Sheenchpal	7
14	Shri Anil Kumar Chaturvedi	Sheenchpal Supervisor	20
15	Shri Shiv Lal Pal	Sheenchpal	17
16	Shri Man Singh Yadav	Sheenchpal	20

Table 4.3: Details of Watershed Development Team (WDTs)

Sr. No.	Name of the PIA	Names of WDT members	M/F #	Age	Qualification / Experience
1.	BSA, LDWR, Moth, Jhansi	Radhey Ram	М	55	Diploma In Civil Engg.
		Dr. Dharm Dev Singh	М	45	Ph. D. (Ag. Economics)
		Mr. Kuldeep Rajput	М	28	M. Sc. (Agroforestry)
		Mr. Amit Vyas	М	32	M.S.W.
		Mrs. Alka Verma	F	26	M.A. (Sociology)
		Mr. M. S. Verma	М	48	Diploma in Ag. Engg.

M – Male, F - Female

4.2 Watershed Committee

The Maletha, Kudri, Dundi-I, Dundi-II, Kurentha, Dakhaneswar, Garhawai, Pahra and Dhanaura micro-watershed will be developed in participatory mode. For the purpose of true participation of community, Watershed Committee (WC) has been elected in general meeting of Gram Sabha. Gram Sabha elected President and Secretary of the committee for smooth function. The By Laws of the WC had been prepared and registration is done under Societies Registration Act XXI, 1860. The WC will follow the By Laws in taking different interventions in the watershed for its sustainable development. SHGs of landless people were also constituted to take up different micro-enterprises. The constitution of watershed committee is under process The details of SHGs are presented in Table 4.4.

Table- 4.4: Details of self help groups (SHGs) in the project area Maletha

Sr. No.	Name of the villages	Details of the SHGs	
		No. of SHGs	Major Activity
1	Maletha	08	Goat, Dairy, Seed Production, Organic Complex, Poultry, Mani Dal Mill, Goat Rearing And Organic Cultivation
	Total	08	

Kudri

Sr. No.	Name of the villages	Details of the SHG	8
		No. of SHGs	Major Activity
1	Kudari	06	Goat Rearing, Vermi-compost, Mini Dal Mil, Organic Complex, Masala Making Unit, Rope Making Unit
2	Dudi	01	Seed Production Unit
3	Maletra	02	Masala Making Unit, Rope Making Unit
4	Gokul	01	Seed Production
Total		10	

Dundi-I

Sr. No.	Name of the villages	Details of the SHGs	
		No. of SHGs	Major Activity
1	Dundi	05	Masala Making Unit, Goat Rearing, Vermi-Compost, Mini Dal Mil, Organic
			Complex
2	Kudari	02	Seed Production Unit, Mini Dal Mil
3	Gokul	03	Goat, Dairy, Seed Production, Vermi-compost
Total		12	

Dundi-II

Sr. No.	Name of the villages	Details of the SHGs	
		No. of SHGs	Major Activity
1	Dundi	05	Seed Production, Rope Making Unit, Goat, Dairy, Organic Complex
2	Kurentha	01	Seed Production Unit
3	Ahraura	01	Goat Rearing
4	Maletha	01	Masala Making Unit
Total	•	8	

Kurentha

Sr. No.	Name of the villages	Details of the SHG	Details of the SHGs		
		No. of SHGs	Major Activity		
1	Kurentha	05	Seed Production Unit, Vermi-compost, Mini dal mil, Organic complex, Goat Keeping		
2	Dundi	01	Goat Keeping		
3	Andaul	01	Dairy		
4	Ahraura	01	Masala Making Unit		
5	Dakhaneswar	02	Goat Rearing, Seed Production		
Total		10			

Dakhaneswar

Sr. No.	Name of the villages	Details of the SHG	Details of the SHGs	
		No. of SHGs	Major Activity	
1	Dakhneshwar	06	Goat, Dairy, Seed Production, Vermi-compost, Rope Making Unit, Goat	
			Rearing, Organic Complex	
2	Singar	02	Seed Production Unit, Mini Dal Mil	
3	Garhawai	03	seed Production, Vermi-compost, Mini Dal Mil	
4	Kurentha	02	Goat Rearing, Poultry	
Total	·	13		

Garhawai

Sr. No.	Name of the villages	Details of the SHGs		
		No. of SHGs	Major Activity	
1	Garhwai	04	Seed Production Unit, Vermi-compost, Mini Dal Mil, Organic Complex	
2	Singar	05	Masala Making Unit, Rope Making Unit, Goat, Dairy, Seed Production, Vermi-compost	
3	Sutta	02	Goat Rearing, Seed Production	
Total	·	11		

Pahra

Sr. No.	Name of the villages	Details of the SHGs	
		No. of SHGs	Major Activity
1	Pahra	08	Goat, Dairy, Seed Production, Organic Complex, Rope Making Unit, Mini
			Dal Mil, Goat Rearing and Vermi-compost
	Total	08	

Dhanaura

Sr. No.	Name of the villages	Details of the SHGs	
		No. of SHGs	Major Activity
1	Dhanoura	06	Seed production unit, Vermi-compost, Mini dal mil, Organic complex, Goat
			keeping, Dairy
2	Gokul	01	Masala making unit
3	Kuretha	02	Goat rearing, Seed production
Total	·	9	

4.3 Central/State sponsored schemes

Several programmes are running in the area which are sponsored by Central and State Govt. and could be converged with watershed programmes. Some of them are listed in Table 4.6.

S.No.	Name of Programme	Implementing Agency	Objectives of the Programme	Project Cost
1	Seed Distribution Programme (Pulse Development & ISOPAM)	U.P. Agriculture Deptt.	To increase seed replacement ratio for higher productivity	25,000/ year/village
2	Pump set Distribution (Food Security Mission)	Agriculture Deptt.	Providing irrigation	10,000 per farmer
3	Training Programme	Agriculture Deptt., KVK	Capacity building of the farmers	-
4	HDPE pipe	Agriculture Deptt.		-
5	National Horticulture Mission (NHM)	Horticulture Deptt.	Increasing the area under fruits and vegetables	-
6	Sanitation Programme	Gram Vikash	To make hygienic condition in the rural areas	-
7	Mid Day Meal	Gram Panchayat (DSO)	To provide education to all children without hunger	-
8	MGNERGA (Bunding, Farm Pond, Adarsh Jalashay, Blast well, Chakroad, etc.)	Gram Panchayat	To provide work to the all village personnel under the rojgar guarantee yojana	-
9	ATMA	U.P. Ag. Deptt.	Horizonal spread of improved technologies	-

Table 4.5: List of Central/State sponsored schemes

5.1 Preparatory Phase

Over exploitation of existing vegetation, expansion of agricultural activities on non-arable lands without due care of soil and water conservation and faulty cultural practices on medium to shallow deep black soils have resulted in wide spread erosion and land degradation. In many of the areas the parent rock is exposed. Even most of the agricultural lands have been converted to wasteland. Due to reduction in vegetal cover and no provision for surface water storage, all the rain water goes off, as such, ground water recharge is negligible causing slow growth of trees and low yield of crops. This situation can certainly be corrected by *in-situ* water harvesting and planting of trees on field bunds and wastelands. Thus, not only degradation process can be checked but also sustainable development can be achieved.

Watershed development has been agreed as the best approach for natural resource management through out the world. However, in the past certain watershed based development projects did not yield desired benefits because of partial treatments in catchments. This project envisages investigating location specific technologies for successful rehabilitating degraded lands in Bundelkhand region.

Integrated approach of development involving diverse societies through active people's participation has been visualized as key to success in overall development of rural society. Following principles have been taken into account before preparing technical plan:

- Land capability classes and agro-climate of the region
- Measures to arrest land degradation
- Maximizing opportunity time for rain drops to facilitate deep infiltration into soil for better moisture conservation *in-situ* and ground water recharge.
- Rain water harvesting and surface storage of rain water
- Safe disposal of excess water
- Ensuring permanent vegetal cover as ultimate saviour of land and water and ensuring availability of fruit, fodder, fuel and small timber from the watershed
- Crop diversification and increasing cropping intensity.
- Maximizing productivity through improved package of practices
- Generation of employment
- Increasing economic returns
- Encouraging participatory rural approach and improvement in existing know-how of farmers
- Encouraging agro-based, house hold and self employment programmes so as to benefit landless people
- Cost effective and low input requiring technology
- Technology giving early dividends
- Suitable distribution of selected technology among the beneficiaries

The details of Preparatory Phase, Works Phase and Convergence planning are described in subsequent section

5.1.1 Entry Point Activities (EPA)

Entry point activities were executed with the consent of stake holders and it helped in winning the confidence of the villagers for moving ahead the other programmes of watershed. In total 18 EPA activities were executed in the project area which costed Rs. 2865600.

5.1.2 Institutional and Capacity Building

The details are available in Chapter 6.

5.2 Works Phase

Runoff

Design of any erosion measures is mainly dependent on runoff from a catchment. Therefore, estimation of probable runoff from any catchment is the first step towards designing and construction of soil and water conservation measures. Runoff is drainage of precipitation from a catchment, which flows out through its natural drainage system. After the occurrence of infiltration and other losses from the precipitation, the excess rainfall flows out through the small natural channels on the land surface to the main drainage channel. Such types of flows are called surface flows. A part of the infiltrated rainwater moves parallel to land surface as subsurface flow, and reappears on the surface at certain other points. Such flows are called interflows. The other part of the infiltrated water percolates downwards to ground water, and moves laterally to emerge in depressions and rivers, and joins the surface flow. This type of flow is called the subsurface flow or ground water flow.

Runoff is a rainfall driven process and depends upon biophysical characteristics of the catchments. Runoff estimation includes its volume and peak rate of flow volume. In designing spillways and outlets or waterways, peak rate of runoff is required while for assessing the storage in earthen dam, tanks and ponds etc. the estimates of runoff volumes are required. Another important variable of interest in drainage line treatment is the flow velocity that is required for determining scour pattern in the river bed and along the banks. In this way, various characteristics parameters of runoff are required for the design of soil and water conservation structures.

Methods of Runoff Computation

There are many methods available for runoff estimation. The most commonly adopted methods are the Curve Number method of the Soil Conservation Service of the USDA for estimation of both excess runoff volume and peak flow rate and the Rational method for the peak flow rate. Many empirical relationships are also widely used for estimation of flow rates. Runoff of the watershed was estimated using Curve Number Method.

Curve number method

The Curve Number method was developed for the determination of the rainfall excess of agricultural watersheds, on per storm basis.

$$Q = \frac{(p - 0.2S)^2}{P + 0.8S}$$

Where, Q= direct runoff, mm P= storm rainfall, mm S= a parameter for surface retention The parameter S is defined as

$$S = \frac{25400}{CN} - 254$$

Where, CN = an arbitrary curve number varying from 0 to 100

The amount of rainfall (P) is also affected by duration. For design considerations, maximum runoff volume is required. It is established that minimum storm duration for flood estimation can be taken as 6 hours. But in certain conditions design rainfall for greater durations can also be taken.

Estimation of Runoff from the Watershed

Runoff from the watershed is estimated by Curve Number method of the Soil Conservation Service of the USDA using 18 years data (1990-2009) with a gap of 2005 and 2006). It is estimated that runoff potential of the project area is 141 mm, equivalent to 17 per cent of average annual rainfall. On the basis of runoff estimated, engineering measures were designed. The works related to natural resource conservation, production system and livelihoods are described in subsequent sections:

5.2.1 Natural resources conservation (Soil and moisture conservation measures, rain water harvesting and water resource development)

To control the damaging runoff which is a cause of erosion from agricultural as well as non agricultural lands, structural measures are required. Following measure are recommended for watershed development in arable and non arable land. The estimate and detailed design of all kinds of interventions are given in Chapter 10. However, summary of physical and financial requirement of different activities is given at the end of this chapter and its yearwise phasing has been given in Chapter 7.

5.2.1.1 Engineering measures for degraded agricultural lands

- Contour bund/field bunds/graded bunds with suitable surplusing arrangements are proposed to prevent erosion of natural resources and improved the moisture regime of having slope 0-3 per cent.
- Marginal/peripheral/submergence bunds with suitable surplusing arrangements are proposed to prevent erosion of natural resources from agricultural lands having slope in the range of 3 to 5 per cent.
- Earthen checkdams/gully plugs /water harvesting bund with suitable weir structures are proposed to conserve runoff and prevent erosion.
- In the lower reach of the watershed, vegetative bunds of vetiver, munj, and other locally available grasses will be taken up.
- Excess runoff will be disposed off safely from the fields though grassed water ways and suitable structures.
- Well recharging units
- Field drainage structures

5.2.1.2 Agronomical measures for agricultural lands

Agronomical measures like contour farming, crop geometry, mulching, deep ploughing, strip, mixed and intercropping, crop rotation and residue management will be taken care in the watershed development programme.

5.2.1.3 Conservation measures for wastelands/ degraded lands/forest areas

To rehabilitate the wasteland/degraded lands/forest areas, vegetative barriers, all types of gully pluggings including drop spillways, installation of gabions, etc. are describes in subsequent section.

• Vegetative barriers: It will be introduced to prevent soil erosion.

• Gully plugging

It has been observed that the plugging of gullies is very much effective in grade control and gully stabilization as well as ground water recharge. Gully plugs which are categorized as temporary, semi-permanent and permanent will be constructed in the watershed.

The watershed is having number of wells, which is ultimate source of drinking and irrigation water supply. These shallow open dug wells' recovery is dependent on perched water. The ephemeral streams of the watershed offer an opportunity to check and store surface water. By checking these streams, wells in the down slope get recharged faster and ultimately more and more area can be brought under irrigation. Following structures have been proposed in the scheme to augment water resources.

• Gabion

NRCAF, Jhansi has demonstrated the effectiveness of the gabion for soil and water conservation at Garhkundar-Dabar watershed in Teekamgarh district of M.P. in Bundelkhand region. The Centre has also imparted trainings for fabrication/installation of gabions to the NGOs. Gabions are being widely used for construction of soil conservation structures now a days. Gabion is large mesh boxes of different sizes, generally rectangular in shape and filled with stones larger than the mesh openings. Galvanized iron wire of 8-10 gauge thickness is used in the fabrication of wire nets and the mesh size is generally kept 10-15 cm. Gabion structures have long life (20-25 years) almost similar to cement permanent structures.

Gabions constructions have the following advantages over the cement ones :

- 1. Flexibility: In uneven sinking foundation gabions can be bending without breaking, whenever there is some unequal settlement in the foundation. These structures do not collapse like rigid structure.
- 2. Permeability: Gabion structure is highly permeable and act as self draining units. Seepage or base flow is easily drained off by them and thus structure is safer against hydrostatic pressure.
- 3. Stability: A gabion is a heavy gravity unit, able to withstand earth thrust.
- 4. Economy: Gabion structures are comparatively cheaper than concrete structure.

Fabrication of a gabion of 3 cum requires about 28-30 kg of GI wire and its fabrication and installation in the field may be done by 8 semi skilled labours. The details are given in Table 5.1.

S. No.	Material	Quantity	Rate	Amount
			()	()
1.	G.I.Wire 8-10 gauge	30 kg	45.00/kg.	1350.00
2.	Stone / Boulders	4.5 cum	700.00/cum	3150.00
3.	Labour for fabrication and its laying	8 Semi Skilled	150.00/mandays	1200.00
	Total			5700.00

Table 5.1: Estimate for fabrication of a gabion (3 m³) and its installation in the watershed

The detailed technical design and estimates of these structures are given in Chapter 11. Capacity survey of the sites of weir structures was conducted and analyzed for water storage and submergence area using software Surfer. The details of the study are presented in Chapter 7.

5.2.2 Production System Interventions

To improve the production and productivity of different crops in the project area, first of all analysis of gaps in the production technologies for cereals, pulses and oilseeds have to be identified. Following gap analysis has been worked out for different catagories of crops.

Gap analysis in cultivation of Pulses (Urd, Moong and Arhar): Kharif Season

SI. No.	Items of package	Recommended practice	Existing practice	Gap in adoption (F/P/N) (*)	Specific reasons for the gap (**)	Farmer proposed strategy (***)
01	Varieties	Improved variety as per recomendetion	Old seeds	Р	1& 2	1 & 2
02	Seed rate (per ha.)	As per crop wise recomendation	As per crop wise recomendation	N	N	Ν
03	Seed treatment	According to problem as fungicides and rizobium	-	F	1	1 & 2
04	Organic manure (tons /ha)	FYM 150-200 NADEP compost – 60-70 Vermicompost – 25-30	Use undecomposed matter	F	1	1 & 2
05	Fertilizer / nutrient (kg/ha) - Basal (N+P+S) - Top dress (N)	20:40:40(N:P:K) (Use SSP for P)	N	F	1, 2 & 5	1, 2, 3 & 5
06	Micro nutrient (specify) :		-	-	-	-

	- Dose (kg/ha) - Method of application	2-3 kg wittable sulphur or 2q zypsum				
07	Pest management	IPM	Only chemical	Р	1	1 & 2
08	Disease management	IPM	Only chemical	Р	1	1 & 2
09	Weed management					
	- Mechanical	Hand weeding	No hand weeding	F	1	1&2
	- Herbicide	Pedimethaline 3.3 lit /ha	-			
10	Any other	-	-	-	-	-
11	Average Yield (Q / ha.)					
	- Grain	16-30 q/ha	9.10 q/ha	F	1	1&2
	- Timber	15 q/ha	Burning	F	1	1 & 2
	$(*) \mathbf{F} = \mathbf{Full}$	P = Partial	N = Nil			
	** Code for specific reasons for g	ap in *** Code for	farmer proposed extension	on strategy		
	adoption	1- Training of	f appropriate soil fertility	management		
	1- Lack of knowledge about approx	priate 2- Demonstra	tion of balance fertilizer,	use of biofertilizer,		

3- Linkage with credit societies.

Jabalpur Indore.

1- Exposure visit same climatic zone institute as

5- Availability of inputs zinc sulphate, MOP.

1- Lack of knowledge about appropriate Use of micro nutrients and new seeds

2- Lack of organic carbon in the soil

3- Lack of knowledge about plant protection measurer

4- Lack of appropriate varieties according to climatic zone.

5- Non-availability of inputs.

practices

Gap Analysis in cultivation of Pulses (Pea, Gram and Lentil)- Rabi Season

Sl. No.	Items of package	Recommended practice	Existing practice	Gap in adoption (F/P/N) (*)	Specific reasons for the gap (**)	Farmer proposed strategy (***)
01	Varieties	Improved variety as per	Old seeds, Awarodhi			
		recomendetion		Р	1& 2	1 & 2
02	Seed rate (per ha.)	80 kg	100 kg	Р	1	1
03	Seed treatment	According to problem as fungicides and rizobium	-	F	1	1 & 2
04	Organic manure (tons /ha)	FYM 150-200 NADEP compost – 60-70	Use undecomposed matter	F	1	1 & 2

		Vermicompost – 25-30				
05	Fertilizer / nutrient (kg/ha)	20:60:40				
	- Basal (N+P+K)	2% foliar spray of Urea	100 kg DAP	F	1, 2 & 5	1, 2, 3 & 5
	- Top dress (N)					
				F		
06	Micro nutrient (specify) :	Use of sulphur (2q				
	- Dose (kg/ha)	zypsum or 3kg wittable		F	1	1 & 2
	- Method of application	sulphur)				
07	Pest management	IPM	Only chemical	Р	1	1,2&5
08	Disease management	IPM	Only chemical	Р	1	1,2&5
09	Weed management	Hand weeding	No hand weeding			
	- Mechanical	Pedimethaline 3.3 lit /ha	-	F	1	1&2
	- Herbicide					
10	Water management :					
	- Number of irrigations	01	Nil	Р	3 & 4	1 & 2
	- Method of irrigation	Check, basin, sprinkler	-			
11	Method of harvesting	Manual	Manual	Ν	Ν	Ν
12	Any other	-	-	-	-	-
13	Average Yield (Q / ha.)					
	- Grain	20-25 q/ha	9.10 q/ha	F	1	1&2
	- Fodder/ Bio- Moss	15 q/ha	Burning	F	1	1 & 2

Gap analysis in cultivation of Oilseeds (Soybean, Groundnut and Til): - Kharif Season

Sl. No.	Items of package	Recommended practice	Existing practice	Gap in adoption (F/P/N) (*)	Specific reasons for the gap (**)	Farmer proposed strategy (***)
01	Varieties	Improved variety as per recomendetioninBundelkhand (zone 6)	Old seeds	F	1& 2	1 & 2
02	Seed rate (per ha.)	As per crop wise recomendation	As per crop wise recomendation	Nil	Nil	Nil
03	Seed treatment & Soil treatment	Thirum 2.5 gm / kg of seed Azatobactor + PSB	No No	F F	1	1 & 2

04	Organic manure (tons /ha)	FYM 150-200 NADEP compost – 60-70 Vermicompost – 25-30	Use undecomposed matter	F	1	1 & 2
05	<u>Fertilizer / nutrient (kg/ha)</u> - Basal (N+P+K) - Top dress (N)	80 : 60 : 40 Use SSP for P	As mixed crop (No fertilizer)	F	1, 2 & 5	1, 2
06	<u>Micro nutrient (specify)</u> : - Dose (kg/ha) - Method of application	Use of sulphur (2q zypsum or 3kg wittable sulphur)	Nil	F	1	1 & 2
07	Pest management	IPM	Only chemical	F	1	1 & 2
08	Disease management	IPM	Only chemical	F	1	1 & 2
09	<u>Weed management</u> - Mechanical - Herbicide	Hand weeding	No hand weeding -	F	1	1
10	Any other	Intercropping line (1 : 3)	No	F	1	1
11	Average Yield (Q / ha.)					
	- Grain	18-20 q/ha	9.10 q/ha	F	1	1
	- Fodder/ Bio- Moss	5 q/ha	-	F	1	1

Gap analysis of Oilseeds (Rai, Mustard and Toria): Rabi Season

Sl. No.	Items of package	Recommended practice	Existing practice	Gap in adoption (F/P/N) (*)	Specific reasons for the gap (**)	Farmer proposed strategy (***)
01	Varieties	Improved variety as per recomendetion	Old seeds	F	1& 2	1 & 2
02	Seed rate (per ha.)	As per crop wise recomendation	As per crop wise recomendation	Nil	Nil	Nil
03	Seed treatment & Soil treatment	Thirum 2.5 gm / kg of seed Azatobactor + PSB	No No	F	1	1 & 2
04	Organic manure (tons /ha)	FYM 150-200 NADEP compost – 60- 70	Use undecomposed matter	F	1	1 & 2

		Vermicompost – 25-30				
05	<u>Fertilizer / nutrient (kg/ha)</u> - Basal (N+P+K) - Top dress (N)	80 : 60 : 40 Use SSP for P	As mixed crop (No fertilizer)	F	1, 2 & 5	1, 2
06	<u>Micro nutrient (specify)</u> : - Dose (kg/ha) - Method of application	Use of sulphur (2q zypsum or 3kg wittable sulphur)	Nil	F	1	1 & 2
07	Pest management	IPM	Only chemical	F	1	1 & 2
08	Disease management	IPM	Only chemical	F	1	1 & 2
09	<u>Weed management</u> - Mechanical - Herbicide	Hand weeding	No hand weeding -	F	1	1
10	Any other	Intercropping line (1:3)	No	F	1	1
11	<u>Average Yield (Q / ha.)</u> - Grain - Fodder/ Bio- Moss	18-20 q/ha 5 q/ha	9.10 q/ha -	F F	1 1	1 1

Gap analysis in cultivation of Cereals (Jowar, Bajra and Maize):-Kharif Season

Sl. No.	Items of package	Recommended practice	Existing practice	Gap in adoption (F/P/N) (*)	Specific reasons for the gap (**)	Farmer proposed strategy (***)
01	Varieties	Improved variety as per recomendetion in Bundelkhand (zone 6)		F	1& 2	1 & 2
02	Seed rate (per ha.)	As per crop wise recomendation	As per crop wise recomendation	Nil	Nil	Nil
03	Seed treatment & Soil treatment	Thirum 2.5 gm / kg of seed		F	1	1 & 2
		Azatobactor + PSB	No	F		
04	Organic manure (tons /ha)	FYM 150-200	Use	F	1	1 & 2
		NADEP compost – 60-	undecomposed			
		70	matter			
		Vermicompost – 25-30				

05	Fertilizer / nutrient (kg/ha) - Basal (N+P+K) - Top dress (N)	80 : 60 : 40 Use SSP for P	As mixed crop (No fertilizer)	F	1, 2 & 5	1, 2
06	<u>Micro nutrient (specify)</u> : - Dose (kg/ha) - Method of application	Use of Zinc suphate (25kg)	Nil	F	1	1 & 2
07	Pest management	IPM	Only chemical	F	1	1 & 2
08	Disease management	IPM	Only chemical	F	1	1 & 2
09	<u>Weed management</u> - Mechanical - Herbicide	Hand weeding	No hand weeding -	F	1	1
10	Average Yield (Q / ha.) - Grain	25-30 q/ha	9-10 q/ha	Р	1	1
	- Fodder/ Bio- Moss	150 q/ha	100 q/ha	Р	1	1

Gap analysis in cultivation of cereals (Wheat and Barley):-Rabi Season

Sl. No.	Items of package	Recommended practice	Existing practice	Gap in adoption (F/P/N) (*)	Specific seasons for the gap (**)	Farmer proposed strategy (***)
01	Varieties	Improved variety as per recomendetion in Bundelkhand (zone 6)	Old seeds	F	1& 2	1 & 2
02	Seed rate (per ha.)	As per crop wise recomendation	2 time seed used	Р	2	2
03	Seed treatment & Soil treatment	Thirum 2.5 gm / kg of seed Azatobactor + PSB	No No	F	1	1 & 2
04	Organic manure (tons /ha)	FYM 150-200 NADEP compost – 60-70 Vermicompost – 25-30	Use undecomposed matter	F	1	1 & 2
05	Fertilizer / nutrient (kg/ha) - Basal (N+P+K)	120:60:40	100:40:00	Р	1, 2 & 5	1, 2

	- Top dress (N)	Half dose of N		F		
06	Micro nutrient (specify) :	Use of Zinc suphate	Nil			
	- Dose (kg/ha)	(25kg)		F	1	1 & 2
	- Method of application					
07	Pest management	IPM	Only chemical	F	1	1 & 2
08	Disease management	IPM	Only chemical	F	1	1 & 2
09	Weed management	Hand weeding	No hand weeding			
	- Mechanical		-	F	1	1
	- Herbicide					
10	Average Yield (Q / ha.)					
	- Grain	25-30 q/ha	9-10 q/ha	Р	1	1
	- Fodder/ Bio- Moss	150 q/ha	100 q/ha	Р	1	1

Crop improvement programme will be taken up on farmer's field with participatory approach on pulses, oilseeds, cereals, etc. Improved package of practices will be demonstrated on farmer's fields. Application of recommended doses of fertilizers, pesticides, weedicides and other practices to the crops was not practiced in the area and farmers rarely use these practices in integrated and balanced manner. For the improvement of productivity integrated crop management, integrated pest management and integrated nutrient management demonstrations should be included in the programme. To improve the productivity following should be followed:

- Placement of basal dose of fertilizers at 8-10 cm depth in the root zone
- Application of multi-nutrient fertilizers to supplement the need of sulphur and other nutrients.
- Intercropping: Recommended intercropping systems like sorghum + pigeon pea, pigeon pea + black gram and soybean + pigeon pea are promising only under normal monsoon condition. Their productivity declines significantly if the monsoon gets delayed up to first week of August. Castor + green gram intercropping is an efficient intercropping system for delayed monsoon condition in black soil. Following intercroppings can be tried to improve the productivity of the system.

Sorghum + Pigeon pea Intercropping

- Sorghum is one of the prominent *kharif* crops of this rainfed MWS
- As the rooting pattern and date of maturity between the sorghum and pigeon pea differ, the two crops show good compatibility when grown together. Sorghum is harvested after 100 to 110 days while pigeon pea matures in 230 to 240 days.
- The legume crop of pigeon pea helps in maintaining soil fertility.
- Sorghum + pigeon pea intercropping is the most promising cropping system for normal monsoon rainfall and even under aberrant weather condition in Bundelkhand region in black soil series.
- The crop should be sown in 1:1 row ratio during last week of June to first week of July as per monsoon occurrence.
- The intercropping system is suitable for rainfed farming in Jhansi district as well as for Micro-watershed of black soil series.

Pigeon pea + black gram Intercropping

- Pigeon pea and black gram are the prominent *kharif* crops of this rainfed MWS
- As the rooting pattern and date of maturity between the black gram and pigeon pea differ, the two crops show good compatibility when grown together. Black gram is harvested after 90 to 100 days while pigeon pea matures in 230 to 240 days.
- Both the legume crop of pigeon pea and black gram helps in maintaining soil fertility.
- Pigeon pea + black gram intercropping is the most promising cropping system for normal monsoon rainfall and even under aberrant weather condition in Bundelkhand region in black soil series.
- The crop should be sown in 1:2 row ratios during last week of June to first week of July as per monsoon occurrence.
- The intercropping system is suitable for rainfed farming in Jhansi district as well as for micro-watershed of black soil series. Soybean + Pigeon pea Intercropping
- Soybean is the new *kharif* crops for this areas where soil is black and has moisture and life saving irrigation near the water harvesting structures.
- As the rooting pattern and date of maturity between the soybean and pigeon pea differ, the two crops show good compatibility when grown together. Soybean is harvested after 110 to 120 days while pigeon pea matures in 230 to 240 days.
- The crop should be sown in 2:1 & 3:1 row ratios during last week of June to first week of July as per monsoon occurrence. *Castor* + *green gram intercropping*
- Castor + green gram intercropping is an efficient intercropping system for delayed monsoon condition as emerged in last five years.
- Castor is a long duration (220-230 days) non-edible crop which grows well under rainfed condition with little effect on its productivity due to delayed sowing upto first week of August than other crop in the area.
- Unlike castor, green gram (*Mung bean*) is a fast growing (65-70 days duration) legume, which escapes competition with castor and is suited well for delayed monsoon conditions.
- Castor and green gram should be sown in separate rows across the slope in 1:2 ratio i.e. 30 cm apart so that the distance between two castor rows remains 60 cm. This would minimize erosion hazard under field conditions.
- This system provides excellent vegetative cover on the ground and reduces runoff and soil loss and improving soil fertility status. It provides employment for 93-95 man-days.

Vegetables and spices

Vegetables and spices were not being grown on commercial scale in the watershed villages. Therefore, it is decided to promote cultivation of onion, garlic, tomato, brinjal, cucurbits, chilies, turmeric and isabgol in areas for income and nutritional security.

Fodder cultivation

Scarcity of fodder in the area emerged as one of the major concern of the watershed community during PRA exercise. Therefore, in addition to the development of community pasture land, fodder cultivation in agricultural fields will be taken up extensively to meet the fodder demands of animals as revealed in fodder requirement analysis.

Replacement of old varieties

Farmers were not aware of high yielding varieties of crops. Certified seeds were rarely used in the area. Therefore, the efforts will be made to replace the prevailing varieties by new high yielding varieties, having wider adaptability against adverse climatic condition. Varieties of urd, moong, sesamum, sorghum

and pearl millet in *kharif* season while durum wheat, wheat, lentil, field pea, chickpea, linseed and mustard/rai in *rabi* season will be introduced on farmers field.

5.2.2.2 ON Farm Test

Productivity of different crops in the region is significantly low, therefore, following On Farm Tests are proposed in the project area:

OFT – **01**

1.	Crop		: Chickpea
2.	Problem identified		: Low yield of chickpea
3.	Title		: Evaluation of high yielding varieties
4.	Farmers practice		: Use of local varieties
5.	Details of technologies selected	for asse	essment and refinement
	Treatments		: T1 - Farmers Practice (local variety)
			: T2 - KWR-108
			: T3 - JG-315
6.	Farming situation		: Rainfed
7.	No. of farmers	: 05	
8.	Initial input		: Seed of high yielding varieties
1) No.	of pods/plant		
2) Yiel	d (q/ha)		
3) C:B			
9.	Area		: 4000 Sq. Meter
10.	Cost of input		: Rs. 4000
11.	Total cost		: Rs. 20000
			OFT – 02
1.	Crop:		: Lentil
2.	Problem identified:		: Low yield of Lentil (using local varieties)
3.	Title:		: Evaluation of high yielding varieties
4.	Farmers practice		: Use of local varieties
	Treatment:		: T1 - Farmers practice (local variety)
			: T2 - DPL-62
			: T3 - DPL 54
5.	Farming situation		: Rainfed
6.	No. of farmers	: 05	

7.	Initial input	: Seed
8.	Performance indicators	
: 1) Y	field (q /ha)	
: 2) C	B Ratio	
9.	Area	: One Acre
10.	Cost of input	: Rs. 2000
11.	Total cost	: Rs. 10000

OFT – 3

1.	Crop	: Linseed		
2.	Problem identified	: Mixed crop with chickpea and lentil (Low yield)		
3.	Title	: Screening of high yielding		
4.	Farmers practices	: Sowing of mixed		
5.	Details of technologies selec	cted for assessment and refinement		
	Treatment	: T1 - Farmers Practice		
		: T2 - Padmini		
		: T3 - Parwati		
6.	Farming situation	: Rainfed		
7.	No. of farmers	: 05		
8.	Sources of Technology	: C. S. A. University of Ag., & Tech., Kanpur		
9.	Initial input	: Seed		
10.	Performance indicators	: 1) Yield (q/ha)		
		: 2) C B ratio		
11.	Area	: One acre per location		
12.	Cost of input	: Rs. 1500		
13.	Total cost:	: Rs. 7500		

OFT – 4

1.	Crop / Enterprises	: Til	
2.	Problem identified	: Low yield of sesamum	
3.	Title	: Selection of high yielding varieties	
4.	Farming situation	: Rainfed	
5.	Farmers practice	: Local varieties	
6.	Details of technologies selected for assessment/refinement		

	Treatment	: T1 - Farmers Practice : T2 - Shekhar : T3 - Pragati
7.	Sources of technology	: C. S. A. University of Agric. & Tech., Kanpur
8.	No. of farmers	:10
9.	Critical input	: Seed
10.	Performance indicators	:
		: 1) Yield (q/ha)
		: 2) C:B ratio
11.	Area	: One acre
12.	Cost of input	: Rs. 250
13.	Total cost	: Rs. 2500
		OFT – 5
1.	Crop / Enterprises	: Arhar (Pigeon pea)
1. 2.	Problem Identified	: Long duration crop with mixed with sorghum
2.	r toblem identified	. Long duration crop with hixed with sorghum
3.	Title	: Introduction of short duration pigeon pea
4.	Farming situation	: Rainfed
-		
5.	Farmers practice	: Long duration varieties
5. 6.	Farmers practice Details of technologies selected	6
		6
6.	Details of technologies selected	d for assessment/refinement
6. 7.	Details of technologies selected Treatment	d for assessment/refinement : T1- Farmers Practice
6.	Details of technologies selected	d for assessment/refinement : T1- Farmers Practice : T2- UPAS 150
6. 7. 8. 9.	Details of technologies selected Treatment No. of farmers Critical input	d for assessment/refinement : T1- Farmers Practice : T2- UPAS 150 : T3- Malviya 13 : 05 : Seed
6. 7. 8. 9. 10.	Details of technologies selected Treatment No. of farmers Critical input Performance indicators	d for assessment/refinement : T1- Farmers Practice : T2- UPAS 150 : T3- Malviya 13 : 05
6. 7. 8. 9. 10. 3) C.E	Details of technologies selected Treatment No. of farmers Critical input Performance indicators .ratio	d for assessment/refinement : T1- Farmers Practice : T2- UPAS 150 : T3- Malviya 13 : 05 : Seed : 1) Yield (q/ha)
6. 7. 8. 9. 10. 3) C.E 11.	Details of technologies selected Treatment No. of farmers Critical input Performance indicators .ratio Area	d for assessment/refinement : T1- Farmers Practice : T2- UPAS 150 : T3- Malviya 13 : 05 : Seed : 1) Yield (q/ha) : One acre per location
6. 7. 8. 9. 10. 3) C.E	Details of technologies selected Treatment No. of farmers Critical input Performance indicators .ratio	d for assessment/refinement : T1- Farmers Practice : T2- UPAS 150 : T3- Malviya 13 : 05 : Seed : 1) Yield (q/ha)

varieties

OFT – 6

1.	Crop/Enterprises	: Animal Husbandry			
2.	Problem identified	: High mortality due to the endoparasites			
3.	Title	: Effect of deworming practices on mortality in kids.			
4.					
Trea	tment:	: T1- Farmers Practice (No Deworming)			
		: T2-First deworming at 10 days deworming with cubazin			
		- Second deworming at one month age with piperazine			
		- Third deworming at two month age with Nelwarm			
		- Fourth deworming at three month age with Zenil flue drench or Destrodin tab.			
5.	No. of kids	: 05 herds (Each herds containing 10-15 kids)			
6.	Sources of Technolog	y : IVRI, Bareilly			
7.	Initial input	: Deworming			
8.	Production system and	thematic area : Disease Management			
9.	Performance indicator	s : 1) Kid mortality			
		2) Body weight gain (at 3 and 6 month age)			
		: 3) Occurrence of other associated health problems, if any			
		: 4) C: B ratio			
10.	Cost of input	: Rs. 1500			
11.	Total cost	: Rs. 7500			

OFT- 7

1.	Crop		: Durum Wheat
2.	Problem identified		: Low Yield
3.	Title		: Assessment of durum wheat varieties in local condition
4.	Farmers practices		: Local varieties
5.	Details of technologies selec	cted for ass	essment and refinement
6.	Treatment:	T1	: Farmers practice (Local varieties)
		T2	: Malav Shakti
		T3	: Malav Ratan
7.	Farming situation		: Rainfed
8.	No. of location	: 05	
9.	Sources of Technology	: Indo	re Ag. University

10.	Initial input	: Seed
11.	Area	: One acre
12.	Performance indicators	: Yield (q/ha)
		C:B ratio
14.Cc	ost of input	: Rs 2000 / location
15.To	tal of cost	: Rs. 10000

OFT-8

1.	Crop	: Wheat
2.	Problem identified	: Low Yield
3.	Title	: Screening of low water requirement varieties.
4.	Farmers practices	: Use of isoproturan 50% @ 1.5 kg / ha
5.	Details of technologies sele	cted for assessment and refinement
6.	Treatment:	T1 : Farmers practice (WH-147 Old)
		T2 : Maldakani
		T3 : Raj 3765
7.	Farming situation	: Three irrigation
8.	No. of location	: 05
9.	Sources of Technology	: C. S. A. University of Ag. Tech., Kanpur
10.	Initial input	: Seed
11.	Area	: One acre / location
12.	Performance indicators	: Yield (q/ha)
C:B	B ratio	
13.	Cost of input	: Rs 2000 / location
14.	Total of cost	: Rs. 10000

5.2.2.3 Crop Demonstrations: Following crop demonstrations are proposed to bridge the productivity gap. **A.** Pulses:- Kharif season

Name of Crop	Urd, Moong and	Urd, Moong and Arhar				
Area under each Demonstration	0.50 ha	0.50 ha				
Total Area of Demonstration	5.00 ha					
Number of Demonstration			10	10		
Situation	Rainfed	Rainfed				
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs)	Cost per ha (Rs)	Demonstration Cost (Rs)		
1. Name of Varieties	Given below	75.00				
2. Sowing Time	25 July to August					
3. Required Seed	12-15 kg	15 X 75	1200.00	600.00		
4. Land Preparation				By user		
5. Sowing Bullock/Seed drill	Line sowing	600	600.00	300.00		
6. Intercultural Operation	One manually	900	900.00	450.00		
7. Use Weedicide (IPM)	3.3 lit / ha Pendimethalin at pre emergence/ Total	450/lit	1485.00	743.00		
	100 q/ha or	60/q	6000.00	3000.00		
8. Use of organic manure as FYM or	60 q/ha or	150/q	9000.00	4500.00		
NEDAD or Vermicompost	30 q/ha	300/q	9000.00	4500.00		
9. Bio Fertilizers/Bio-agents (IPNM)						
i) Rhizobium + PSB (IPNM)	1.50 kg /ha (Soil treatment)	136.00	204.00	102.00		
ii) Trichoderma (IPM)	Soil 3 kg /ha in Manure	130.00	390.00	195.00		
10. Recommended dose of fertilizers (IPNM)						
25:60:30 NPK	130 kg	10	1300	650		
i) DAP	375 kg	5	1875	938		
ii) SSP	In case of SSP 54 kg Urea applied	6	324	162		
iii) Urea		7	350	175		
iv) MOP						
11. IPM	At 15 days interval (10 kg)	30	300	150		
Spray of Neem Seed Kernal	15 + 15 + 15 + 15 + 2 kg/Lit Water, Neem leave, Cow dung, Cow urine and Gur (62 kg/lit)	2	124	62		

Mataka Khad	NA			
Insecticides/Fungicides				
ICM	Total		33052.00	16527.00
Demonstrations on IPM	I, IPNM, Improved Seed and Technology can be done according to	the problem and cho	ice of user	
	Variety			
Urd	Shekhar 1, Shekhar 2, Shekhar 3, Azad 1, Azad 2 (Green) & 3			
Moong	Ioong T 44, K 851, PDM 11, 54 139			
Arhar	Arhar Early- Paras, U.P.A.S.120, Pusa 992, Type 21			
	Late – Amar, Bahar, Narendra Arhar -1, Azad, Pusa 9, Malviya Vikash, Chamtkar			

Rabi

Name of Crop Area under each Demonstration			Lentil, Chickpe	ea and Field Pea
			0.5 ha	
Total Area of Demonstration		5 ha		
Number of Demonstration			10	
Situation			Un-irrigated	
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)
1. Name of Varieties	Given below			
2. Sowing Time	IInd week of October			
3. Required Seed				
Gram and Pea	100 kg/ha	70.00	7000.00	3500.00
Lentil	40 kg / ha (F1,F2, Certified)	80.00	4000.00	2000.00
4. Land Preparation	By User		-	By User
5. Sowing Bullock/Seed drill	By User		-	By User
6. Intercultural Operation	By User		-	By User
7. Use Weedicide	Pendimethalin 3.3 li/ha (Pre emergence)	465.00	1535.00	767.00
	100 q/ha or	60/q	6000.00	3000.00
8. Use of organic manure as FYM or	60 q/ha or	150/q	9000.00	4500.00
NEDAD or Vermicompost	30 q/ha	300/q	9000.00	4500.00
9. Bio Fertilizers / Bio-agents	24 pkt	7	168	84

i) Rhizobium + PSB	5 Pkt + 5 Pkt = 10 Pkt @ Rs	7.50	75.00	37.50	
ii) Trichoderma	1.50 kg /ha (Soil treatment)	136.00	204.00	102.00	
10. Recommended dose of fe	rtilizers				
25:60:30 NPK					
i) SSP	375 kg /ha	5	1875	938	
ii) Urea	In case of SSP 50 kg Urea applied	6	300	150	
iii) MOP	50 kg / ha	7	350	175	
11. IPM					
Spray of Neem oil and leaf ex	trect At 15 days interval (10 kg)	30	300	150	
Mataka Khad	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62	
	Neem leave, Cow dung, Cow urine and				
	Gur (62 kg/lit)				
ICM			39931.00	19965.50	
Demonstrations on IPM, IPM	M, Improved Seed and Technology can be done accord	ling to the problem and c	hoice of user		
	Variety				
Lentil Nare	ndra Masoor-1, DPL-15, L-4076, Pusa Vaibhav				
	Late- IPL-81, K-75				
Chickpea KWI	KWR-108, KGD 1168, JG 315, Pusa 256,				
Field Pea PJ 88	PJ 885, Indra, Jai,				
Late	– Adarsh				

B. Oilseeds: Kharif season

Name of Crop			Til, Groundnut and Soybean		
Area under each Demonstration			0.50 ha		
Total Area of Demonstration			3.00 ha		
Number of Demonstration			6		
Situation			Rainfed		
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)	
1. Name of Varieties	Given below				
2. Sowing Time	June last to July last				
3. Required Seed					

Til	5 kg./ ha				
Groundnut	95 kg./ha				
Soybean	80 kg				
4. Land Preparation	By user				
5. Sowing Bullock/Seed drill	Line sowing	410 / hr	615	308	
	Thinning and Digging of plant at	2 Labour	240	120	
6. Intercultural Operation	raining	120/day			
7. Use Weedicide	-	-	-	_	
	100 q/ha or	60/q	6000.00	3000.00	
8. Use of organic manure as FYM or	60 q/ha or	150/q	9000.00	4500.00	
NEDAD or Vermicompost	30 q/ha	300/q	9000.00	4500.00	
1. Bio Fertilizers/Bio-agents					
i) Azatobactor + PSB (Til &	With 1 q vermi compost / NADEP	300 + 7	450	225	
Groundnut)	10 Pkt + 10 Pkt in one ha				
ii) Rhizobium + PSB (Soybean)	20 Pkt	7	140	70	
12. Recommended dose of fertilizers					
30 : 15 : 25 N : P : Zn NPK					
i) SSP	275 kg	5	1375	688	
ii) Urea	55 kg	5	275	140	
iii) Zn	25 kg	10	250	125	
13. IPM					
Spray of Neem oil and leaf extrect	At 15 days interval (10 kg)	30	300	150	
Mataka Khad	15 + 15 + 15 + 15 + 2 kg/Lit	2	124	62	
	Water, Neem leave, Cow dung,				
	Cow urine and Gur (62 kg/lit)				
Insecticides/Fungicides					
ICM		27769	13888		
Demonstrations on IPM, IPNM, Impro	ved Seed and Technology can be done acco	ording to the problem and	l choice of user		
	Variet	У			
	Shekhar, Pragati				
Groundnut Prakash, Am	ber				
Soybean P.S.564, P.K.	416				

Name of Crop C		Castor (On earthen bunds)			
Area under each Demonstration	1	1.5 X 600 Meter = 900 sq. M or 1000 sq.m.			
Total Area of Demonstration	1	10 ha			
Number of Demonstration	1	0 X 10 = 100			
Situation	F	Rainfed			
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)	
1. Name of Varieties	Type -3, Tarai-4, Kalpi 6,				
2. Sowing Time	15 July to 15 August				
3. Required Seed	15 / ha	70	1050	105	
4. Land Preparation	-	-	-	-	
	Digging by hand on Bunds	4 labour @ Rs 120 /			
5. Sowing Bullock/Seed drill		day	480	48	
6. Intercultural Operation	-	-	-	-	
7. Use Weedicide	-	-	-	-	
8. Use of FYM	-	-	-	-	
9. Use of Vermi-compost	-	-	-		
10. Use of NEDAP Compost	-	-	-	-	
11. Bio Fertilizers/Bio-agents	-	-	-	-	
i) Azatobactor + PSB	-	-	-	-	
ii) Rhizobium + PSB	-	-	-	-	
iii) Trichoderma	-	-	-	-	
12. Recommended dose of fertilizers	-	-	-	-	
50:25:15 NPK					
i) DAP	45 kg	10	450	45	
ii) SSP	-	-	-	-	
iii) Urea	80 kg	5	400	40	
iv) MOP	25 kg	5	125	13	
13. IPM					
Spray of Neem oil and leaf extrect	-	-	-	-	
Mataka Khad	-	-	-	-	
Insecticides/Fungicides	-	-	-	-	
Total			2505	251	

	Rabi Seaso	n		
Name of Crop			Mustard/Rai	
Area under each Demonstration			0.50 ha	
			5.00	
			10	
Situation			Rainfed	
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)
1. Name of Varieties	Maya, Kranti, Basanti			
2. Sowing Time	September last to Last October			
3. Required Seed	5 kg /ha	150	750	375
4. Land Preparation	By user			
5. Sowing Bullock/Seed drill	Line sowing	-	-	-
6. Intercultural Operation	Topping at the time of before flowering	2 Labour @ 120/day	240	120
7. Use Weedicide	NA			
	100 q/ha or	60/q	6000.00	3000.00
8. Use of organic manure as FYM or	60 q/ha or	150/q	9000.00	4500.00
NEDAD or Vermicompost	30 q/ha	300/q	9000.00	4500.00
9. Bio Fertilizers/Bio-agents				
i) Azatobactor + PSB	20 Pkt Soil Treatment	7	140	70
10. Recommended dose of fertilizers				
80:60:40 NPK				
i) DAP	120 kg	10	1200	600
ii) SSP	-	-	-	-
iii) Urea	100 kg	5	500	500
iv) MOP	80 kg	5	400	200
11. IPM				
Spray of Neem oil and leaf extrect	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
Mataka Khad	Neem leave, Cow dung, Cow urine and			

	Gur (62 kg/lit)			
Insecticides/Fungicides	Melathion/ Indosulphan		700	350
ICM			28354.00	14427.00
Name of Crop			Toriya	
Area under each Demonstration			0.50	
Total Area of Demonstration			4.00	
Number of Demonstration			8	
Situation			Irrigated / Rainfed	1
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)
1. Name of Varieties	T. 9, Bhawani, PT – 303, PT 30			
2. Sowing Time	September			
3. Required Seed	4 kg	150	600	300
4. Seed treatment	2 thirum + 1 gm Carbendazim / kg seed		150	75
5. Sowing Bullock/Seed drill	Line sowing	-	-	-
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By user			
9. Use of Vermi-compost	By user	-	-	-
10. Use of NEDAP Compost	By user	-	-	-
11. Bio Fertilizers/Bio-agents	-	-	-	-
i) Azatobactor + PSB	-	-	-	-
ii) Rhizobium + PSB	-	-	-	-
iii) Trichoderma	-	-	-	-
12. Recommended dose of fertilizers	-	-	-	-
50:30:30 NPK				
i) DAP	60 kg	10	600	300
ii) SSP	-	-	-	-

iii) Urea	100 kg	5	500	250
iv) MOP	50 kg	5	250	125
13. IPM				
Spray of Neem oil and leaf extrect	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			
Insecticides/Fungicides	NA	-	-	-
Total			2524	1262

Name of Crop			Linseed	
Area under each Demonstration		0.50	0.50	
Total Area of Demonstration			5.00	
Number of Demonstration			10	
Situation			Rainfed	
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)
1. Name of Varieties	Parwati, Padmini, rashmi etc			
2. Sowing Time	Full October			
3. Required Seed	30 kg	75	2250	1125
4. Seed Treatment	2 thirum + 1 gm Carbendazim / kg seed		150	75
5. Sowing Bullock/Seed drill	Line sowing	410 /hr	820	410
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By User	-	-	-
9. Use of Vermi-compost	-	-	-	-
10. Use of NEDAP Compost	-	-	-	-
11. Bio Fertilizers/Bio-agents	-		-	-
i) Azatobactor + PSB	-	-	-	-
ii) Rhizobium + PSB	-	-	-	-

iii) Trichoderma	-	-	_	-
12. Recommended dose of fertilizers				
50:40:40 NPK				
i) DAP	80 kg	10	800	400
ii) SSP	-	-	-	-
iii) Urea	65kg	5	325	162
iv) MOP	80	5	400	200
13. IPM				
Spray of Neem oil and leaf extrect	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			
Insecticides/Fungicides	NA			
Total			5169	2584

C. Cereals and Millets Kharif season –

Name of Crop			Sorghum, Bajra and Maize	
Area under each Demonstration			0.50	
Total Area of Demonstration			5.00	
Number of Demonstration			10	
Situation			Rainfed	
Detail of Demonstration	Intervention / Technology Adopted	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)
1. Name of Varieties				
2. Sowing Time	June last week			
3. Required Seed				
Sorghum	12 kg /ha			
Bajra	5 kg/ha			
	2 thirum + 1 gm Carbendazim / kg		150	75
4. Seed treatment	seed			
5. Sowing Bullock/Seed drill	Line sowing		900	450
6. Intercultural Operation	-	-	-	-

7. Use Weedicide		Atragene 50% 1.5 kg /ha	235/ acre	588		294
		100 q/ha or	60/q	6000.00	3000.00	
8. Use of organic r	nanure as FYM or	60 q/ha or	150/q	9000.00	4500.00	
NEDAD or Vermi	compost	30 q/ha	300/q	9000.00	4500.00	
9. Bio Fertilizers/E	Bio-agents					
i) Azatobactor + l	PSB	20 Pkt Soil Treatment	7	168	84	
ii) Trichoderma		1.5 kg/ha (Soil treatment)	136	204		102
10. Recommended	l dose of fertilizers					
80:40:30 NI	PK					
i) DAP		100 kg/ha	9	900		450
ii) SSP						
iii) Urea		150 kg/ha	6	900		450
iv) MOP		50 kg/ha	7	350		175
11. IPM			175	350		175
Spray of Neem oil	and leaf extrect	At 15 days interval (10 kg)	30	300	150	
		15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62	
		Neem leave, Cow dung, Cow urine				
Mataka Khad		and Gur (62 kg/lit)				
Insecticides/Fungio	cides	NA				
14. Harvesting				2000		1000
15. Threshing /We	ighing			3500		1750
16. Storage				200	100	
		Variety				
Sorghum	Varsha, CSV 1					
	Late – Vjeta, B					
		-8203, ICMB-155				
Bajra		Late-WCC-75				
Maize	Ganga-11, Sart Late-HQPM-5	aj, Prakash, Dakan 107				

Rabi Season

Name of Crop	Barley, Wheat (aestivum) and Durum Wheat
Area under each Demonstration	0.50 ha
Total Area of Demonstration	3.00 ha

Number of Demonstration			06		
Situation			Rainfed		
Detail of Demonstration	Intervention / Technology	Rate(Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstratio	
1. Name of Varieties	Adopted			n Cost (Rs)	
1. Name of varieties	Azad, K-141, Geetajali, Upasna Late- DWR-28, Lakhan				
2. Sowing Time	Oct last week				
3. Required Seed	100 kg/ha				
*	100 kg/na				
Barley Wheet (and Durmer Wheet	1251				
Wheat (<i>aestivum</i>) and Durum Wheat	125kg/ha		000	450	
4. Land Preparation	By User		900	450	
5. Sowing Bullock/Seed drill	By User		450	225	
6. Intercultural Operation	By User				
7. Use Weedicide	Total 2.5 Pkt	450/acre	1125	563	
	100 q/ha or	60/q	6000.00	3000.00	
8. Use of organic manure as FYM or	60 q/ha or	150/q	9000.00	4500.00	
NEDAD or Vermicompost	30 q/ha	300/q	9000.00	4500.00	
9. Bio Fertilizers/Bio-agents	24 Pkts	7	164	84	
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84	
ii) Trichoderma	2.5 kg/ha (Soil treatment)	136	340	170	
10. Recommended dose of fertilizers					
25:60:30 NPK					
i) DAP	100 kg/ha	9	900	450	
ii) SSP					
iii) Urea	150 kg/ha	6	900	450	
iv) MOP	50 kg/ha	7	350	175	
v) Zinc Sulphate	20 kg/ha	40	800	400	
11. IPM	-	175	350	175	
Spray of Neem oil and leaf extrect	At 15 days interval (10 kg)	30	300	150	
Mataka Khad	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62	

		Neem leave, Cow dung, Cow urine		
		and Gur (62 kg/lit)		
Insecticides/Fungicide	es	NA		
14. Harvesting			2500	1250
15. Threshing /Weigh	ing		5000	2500
16. Storage			500	250
		Variety		
Barley	Azad, K-141, G	eetajali, Upasna		
	Late- DWR-28,	Lakhan		
Wheat (aestivum)	K-8027, C-306,	LOK-1, HD-2888, Raj-1555		
	Late-Marviya-2	34, UP-2425		
Durum Wheat	Malav Shri, Sha	kti, Ratan		

5.2.2.4 Demonstrations on fodder and grass cultivation

Name of Crop			Stylo hamata (or	Stylo hamata (on bund)	
Area under each Demonstration			0.50 ha	0.50 ha	
Total Area of Demonstration			10.00 ha		
Number of Demonstration			20		
Situation			Rainfed		
Seed Requirement			250 kg		
Seed Amount			7500		
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)	
1. Name of Varieties	Malav Shri, Shakti, Ratan				
2. Sowing Time	Oct to mid Nov				
3. Required Seed	125 kg/ha	20	2500	1250	
4. Land Preparation					
5. Sowing Bullock/Seed drill	Line Sowing	-	-	-	
6. Intercultural Operation	-	-	-	-	
7. Use Weedicide	-	-	-	-	
8. Use of FYM	By User (Training)	600	3600	1800	

9. Use of Vermi-compost	By User (Training)	150	3000	1500
10. Use of NEDAP Compost	By User (Training)	100	3000	1500
11. Bio Fertilizers/Bio-agents	24 Pkts	7	164	84
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84
ii) Rhizobium + PSB				
iii) Trichoderma	2.5 kg/ha (Soil treatment)	136	340	170
12. Recommended dose of fertilizers				
25:60:30 NPK				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	150 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
	20 kg/ha	40	800	400
13. IPM		175	350	175
Spray of Neem Seed Kernal	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			
Insecticides/Fungicides	NA			
14. Harvesting			2500	1250
15. Threshing /Weighing			5000	2500
16. Storage			500	250

Name of Crop			Berseem		
Area under each Demonstration			0.50 ha	0.50 ha	
Total Area of Demonstration			2.00 ha		
Number of Demonstration			4		
Situation			Irrigated		
Seed Requirement			30 kg		
Seed Amount			4500		
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs/kg/ Pkt)	Cost per ha	Demonstration Cost (Rs)	
			(Rs)		

1. Name of Varieties	Malav Shri, Shakti, Ratan			
2. Sowing Time	Oct to mid Nov			
3. Required Seed	125 kg/ha	20	2500	1250
4. Land Preparation				
5. Sowing Bullock/Seed drill	Line Sowing	-	-	-
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By User (Training)	600	3600	1800
9. Use of Vermi-compost	By User (Training)	150	3000	1500
10. Use of NEDAP Compost	By User (Training)	100	3000	1500
11. Bio Fertilizers/Bio-agents	24 Pkts	7	164	84
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84
ii) Rhizobium + PSB				
iii) Trichoderma	2.5 kg/ha (Soil treatment)	136	340	170
12. Recommended dose of fertilizers				
25:60:30 NPK				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	150 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
	20 kg/ha	40	800	400
13. IPM		175	350	175
Spray of Neem Seed Kernal	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			
Insecticides/Fungicides	NA			
14. Harvesting			2500	1250
15. Threshing /Weighing			5000	2500
16. Storage			500	250

Name of Crop			Sudan Grass	
Area under each Demonstration (0.50 ha	
Total Area of Demonstration 5			5.00 ha	
Number of Demonstration			10	
Situation			Irrigated	
Seed Requirement			60 kg	
Seed Amount			4500	
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs/kg/ Pkt)	Cost per ha	Demonstration Cost (Rs)
			(Rs)	
1. Name of Varieties	SSG (Pro-agro)/pioneer			
2. Sowing Time	March to July			
3. Required Seed	20 kg/ha	80	1600	800
4. Land Preparation				
5. Sowing Bullock/Seed drill	Line Sowing	-	-	-
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By User (Training)	600	3600	1800
9. Use of Vermi-compost	By User (Training)	150	3000	1500
10. Use of NEDAP Compost	By User (Training)	100	3000	1500
11. Bio Fertilizers/Bio-agents				
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84

ii) Rhizobium + PSB				
iii) Trichoderma				
12. Recommended dose of fertilizers				
25:60:30 NPK				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	150 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
13. IPM		175	350	175
Spray of Neem Seed Kernal				
Mataka Khad				
Insecticides/Fungicides	NA			

Name of Crop			Lucerne	
Area under each Demonstration			0.50 ha	
Total Area of Demonstration			2.00 ha	
Number of Demonstration			4	
Situation			Irrigated	
Seed Requirement			24 kg	
Seed Amount			2900	
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs/kg/ Pkt)	Cost per ha (Rs)	Demonstration Cost (Rs)
1. Name of Varieties	As per annexure-II			
2. Sowing Time	Oct to mid Nov			
3. Required Seed	15 kg/ha	100	1500	750
4. Land Preparation				

5. Sowing Bullock/Seed drill	-	-	-	-
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By User (Training)			
9. Use of Vermi-compost	By User (Training)			
10. Use of NEDAP Compost	By User (Training)			
11. Bio Fertilizers/Bio-agents				
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84
ii) Rhizobium + PSB				
iii) Trichoderma				
12. Recommended dose of fertilizers				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	50 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
	20 kg/ha	40	800	400
13. IPM		175	350	175
Spray of Neem Seed Kernal				
Mataka Khad				
Insecticides/Fungicides				

5.2.2.5 Demonstrations on medicional and aeromatic plants

Name of Crop			Aloe-Vera	
Area under each Demonstration			0.50 ha	
Total Area of Demonstration			1.00 ha	
Number of Demonstration			2	
Situation			Irrigated	
Rhizomes			35000	
Amount			70000	
Detail of DemonstrationIntervention / Technology AdoptedRate (Rs/kg/ Pkt)			Cost per ha	Demonstration Cost (Rs)
			(R s)	
1. Name of Varieties	Rhizomes			

2. Sowing Time	July			
3. Required Seed	30000 Rhizomes	0.50	15000	7500
4. Land Preparation				
5. Sowing Bullock/Seed drill	Line Sowing	-	-	-
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By User (Training)	600	3600	1800
9. Use of Vermi-compost	By User (Training)	150	3000	1500
10. Use of NEDAP Compost	By User (Training)	100	3000	1500
11. Bio Fertilizers/Bio-agents				
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84
ii) Rhizobium + PSB				
iii) Trichoderma	2.5 kg/ha (Soil treatment)	136	340	170
12. Recommended dose of fertilizers				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	150 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
	20 kg/ha	40	800	400
13. IPM		175	350	175
Spray of Neem Seed Kernal	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			
Insecticides/Fungicides	NA			
14. Harvesting			2500	1250
15. Threshing /Weighing			5000	2500
16. Storage			500	250

Name of Crop			Tulsi		
Area under each Demonstration			0.50 ha	0.50 ha	
Total Area of Demonstration			1.00 ha		
Number of Demonstration			2		
Situation			Irrigated		
Seed Requirement			15 kg		
Seed Amount			3750		
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs/kg/ Pkt)	Cost per ha	Demonstration Cost (Rs)	
			(Rs)		
1. Name of Varieties	Kali Tulsi				
2. Sowing Time	June to July				
3. Required Seed	5 kg/ha	500	2500	1250	
4. Land Preparation					
5. Sowing Bullock/Seed drill	Line Sowing	-	-	-	
6. Intercultural Operation	-	-	-	-	
7. Use Weedicide	-	-	-	-	
8. Use of FYM	By User (Training)	600	3600	1800	
9. Use of Vermi-compost	By User (Training)	150	3000	1500	
10. Use of NEDAP Compost	By User (Training)	100	3000	1500	
11. Bio Fertilizers/Bio-agents					
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84	
ii) Rhizobium + PSB					

iii) Trichoderma	2.5 kg/ha (Soil treatment)	136	340	170
12. Recommended dose of fertilizers				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	150 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
	20 kg/ha	40	800	400
13. IPM		175	350	175
Spray of Neem Seed Kernal	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			

Name of Crop			Turmeric	
Area under each Demonstration			0.50 ha	
Total Area of Demonstration			2.00 ha	
Number of Demonstration			4	
Situation			Irrigated	
Rhizomes			15 q	
Amount			37500	
Detail of Demonstration	Intervention / Technology Adopted	Rate (Rs/kg/ Pkt)	Cost per ha	Demonstration Cost (Rs)
			(R s)	
1. Name of Varieties	Rhizomes			
2. Sowing Time	June to July			
3. Required Seed	5 q	3000	15000	7500

4. Land Preparation				
5. Sowing Bullock/Seed drill	Line Sowing	-	-	-
6. Intercultural Operation	-	-	-	-
7. Use Weedicide	-	-	-	-
8. Use of FYM	By User (Training)	600	3600	1800
9. Use of Vermi-compost	By User (Training)	150	3000	1500
10. Use of NEDAP Compost	By User (Training)	100	3000	1500
11. Bio Fertilizers/Bio-agents				
i) Azatobactor + PSB	12 Pkt + 12 Pkt	7	168	84
ii) Rhizobium + PSB				
iii) Trichoderma	2.5 kg/ha (Soil treatment)	136	340	170
12. Recommended dose of fertilizers				
i) DAP	100 kg/ha	9	900	450
ii) SSP				
iii) Urea	150 kg/ha	6	900	450
iv) MOP	50 kg/ha	7	350	175
	20 kg/ha	40	800	400
13. IPM		175	350	175
Spray of Neem Seed Kernal	At 15 days interval (10 kg)	30	300	150
	15 + 15 + 15 + 15 + 2 kg/Lit Water,	2	124	62
	Neem leave, Cow dung, Cow urine and			
Mataka Khad	Gur (62 kg/lit)			

5.2.2.6 Horticulture/agroforestry development

. Growing of crops in combination with woody perennial on same piece of land is called agroforestry and it is economically viable and way out to increase the permanent vegetal cover. The estimates for aonla, guava, lemon, bael, ber and silvi-pastoral systems are presented in Table 11.4 to 11.9.

S.N.	Work items	Cost/unit (Rs.)	Amount (Rs./ha)
1.	Digging of pits of 0.75x0.75x0.75 m3	25.00	2500.00
2.	Average of cost of planting material	20.00	2000.00
3.	Carriage charges from nursery to the planting	2.50	250.00
	site		
4.	Cost of planting+1st watering	4.00/plant	400.00
5.	Cost of raising agricultural crops @ Rs. 15,000.00 ha-1 yr-1	15000.00	15000.00
6.	Miscellaneous	Lump sump	2000.00
		G. Total	22150.00

Table 5.2: Estimate for development of aonla based agroforestry systems (100 trees/ha)

Table 5.3: Estimate for development of guava based agroforestry systems (100 trees/ha)

S.N.	Work items	Cost/unit	Amount (Rs./ha)
		(Rs.)	
1.	Digging of pits of 0.75x0.75x0.75 m3	25.00	2500.00
2.	An average of cost of planting material	15.00	1500.00
3.	Carriage charges from nursery to the planting	2.50	250.00
	site		
4.	Cost of planting+1st watering	4.00/plant	400.00
5.	Cost of raising agricultural crops @ Rs.	15000.00	15000.00
	15,000.00 ha-1 yr-1		
6.	Miscellaneous	Lump sump	2000.00
		G. Total	21650.00

Table 5.4: Estimate for development of lemon based agroforestry systems (150 trees/ha)

S.N.	Work items	Cost/unit	Amount (Rs./ha)
		(Rs.)	
1.	Digging of pits of 0.75x0.75x0.75 m3	25.00	3750.00
2.	Average of cost of planting material	7.00	1050.00
3.	Carriage charges from nursery to the planting	2.50	375.00
	site		
4.	Cost of planting+1st watering	4.00/plant	600.00
5.	Cost of raising agricultural crops @ Rs.	15000.00	15000.00

	15,000.00 ha-1 yr-1		
6.	Miscellaneous	Lump sump	2500.00
		G. Total	23275.00

Table 5.5: Estimate for development of bael based agroforestry systems (100 trees/ha)

S.N.	Work items	Cost/unit	Amount (Rs./ha)
		(Rs.)	
1.	Digging of pits of 0.75x0.75x0.75 m3	25.00	2500.00
2.	Average of cost of planting material	10.00	1000.00
3.	Carriage charges from nursery to the planting	2.50	250.00
	site		
4.	Cost of planting+1st watering	4.00/plant	400.00
5.	Cost of raising agricultural crops @ Rs.	15000.00	15000.00
	15,000.00 ha-1 yr-1		
6.	Miscellaneous	Lump sump	2000.00
		G. Total	21150.00

Table 5.6: Estimate for development of ber based agroforestry systems (150 trees/ha)

S.N.	Work items	Cost/unit	Amount (Rs./ha)
		(Rs.)	
1.	Digging of pits of 0.75x0.75x0.75 m3	25.00	3750.00
2.	Average of cost of planting material	10.00	1500.00
3.	Carriage charges from nursery to the planting	2.50	375.00
	site		
4.	Cost of planting+1st watering	4.00/plant	600.00
5.	Cost of raising agricultural crops @ Rs.	15000.00	15000.00
	15,000.00 ha-1 yr-1		
6.	Miscellaneous	Lump sump	2500.00
		G. Total	23725.00

S.N.	Work items	Cost/unit	Amount (Rs./ha)
		(Rs.)	
1.	Digging of pits of 0.6x0.6x0.6 m3	13.00	5200.00
2.	Average of cost of planting material	7.00	2450.00
3.	Carriage charges from nursery to the planting	2.50	1000.00
	site		
4.	Cost of planting+1st watering	3.00/plant	1200.00
5.	Cost of raising pasture @ Rs. 25,000.00 ha-1	25000.00	25000.00
	yr-1 (About 38000 slips of different grasses will		
	be required)		
6.	Miscellaneous	Lump sump	3000.00
		G. Total	38200.00

Table 5.7: Estimate for development of silvopastoral systems (400 trees/ha)

5.3 Livelihood Option for Village Groups / Community

1. Vermi-compost unit

Capacity – 100 metric tonn per year

S. No.	Head of Expenditure	Unit	Quantity	Rate (Rs.)	Total Amount (Rs.)
1.	Land	Sq. Meter	4000	50000.00	50000.00
2.	Platform	Sq. Meter	240	-	40000.00
3.	Shed (Angle iron & Asbestos Sheet)		240	-	120000.00
4.	Hand pump / Well	-	01	-	40000.00
5.	Dung	Metric ton	100	500	50000.00
6.	Red worms (Eisinia fetida)	Quintal	01	25000	25000.00
7.	Chhanna (Manual)	-	01	8000	8000.00
8.	Weight/Kanta	-	01	-	4000.00
9.	Implements- Spade, Tasala, Hajara	-	-	-	2000.00
	etc.				
10.	Other Expenses & Labour	-	-	-	25000.00
	Total				364000.00

Farmers share is 1- Land, 2- Plate form, 4- Hand pump/Well, 5- Dung & 10- Labour i.e Rs. 50000.00 + 40000.00 + 40000.00 + 50000.00 + 25000.00 = 205000.00 (Rs. Two lakh five thousand only). Remaining amount Rs. 1,59000.00 (Rs. One lakh fifty nine thousand only) will be provided by the project. Term and condition is applied that vermicompost unit will run in participatory mode by the Groups i.e. made by farming community for their livelihood improvement. Farmers share – 205000.00

 Farmers share –
 205000.00

 Project Share 159000.00

 Total (Rs.)
 364000.00

2. Nursery unit

S. No.	Head of Expenditure	Unit	Quantity	Rate (Rs.)	Total Amount (Rs.)
1.	Land	Acre	1/2	90000.00	45000.00
2.	Fencing				
a.	Barbed wire	Quintal	1.5	6600.00	9900.00
b.	Concrete polls	No.	53	275.00	14575.00
c.	Lobour	No.	20	100.00	2000.00
3.	Boring / Well	No.	01	40000.00	40000.00
4.	Beds preparation, irrigation channels etc.	-	-	-	10000.00
5.	Low cost poly house (Bareja)	No.	01	-	5000.00
6.	Implements- khurpi, Spade, hajara etc.	-	-	-	2000.00
7.	Polythene begs	Kg	150	100.00	15000.00
8.	Manure (FYM)	Ton	2	1500.00	30000.00
9.	Chemicals	-	-	-	1000.00
	Total				174475.00

Farmers share is 1- Land, 2- Labour, 3- Boring/Well, 5- Bed & irrigation channels i.e Rs. 45000.00 + 2000.00 + 40000.00 + 10000.00 = 97000.00 (Rs. Ninety seven thousand only). Remaining amount Rs. 77475.00 (Rs. Seventy seven thousand four hundred seventy five only) will be provided by the project. Term and condition is applied that Nursery unit will be run in participatory mode by the Groups i.e. made by farming community for their livelihood improvement.

Farmers share – 97000.00 Project Share - 77475.00 **Total** 174475.00

Month Wise Plan of Nursery Raising

Nursery development work takes six months to one year and monthly work for raising of plants is fixed. Here we detailed the plants in village condition of district Lalitpur (UP)

Months	Details of Plants & work
January	Collect the seeds of Sirash, Khair, Aonla, Teak, Bakain, Acacia, Amaltash plant from Forest Deppt. or other reliable sources
February	Seed Sowing – Bamboo, Shisham, Sirash, Gulmohar & Seed Treatment of Teak seed by Lime in pit
March	Plant Germinated Root Trainer in Polythene Bags for Shisham, Vilayati Babool and Aonla
April	Seed sowing should be done of Khair, Aonla, Bamboo and Arjun
May	Collect seeds of Kangi, Shemal and Gulmohar
June	One year or more old plant of Jamun, Kangi, Arjun and Shisham ready for the sale
July	For the next year Germination Plot should be prepared for the Ber, Gulmohar, Khair, Kathal, Jamun, Kangi, Neem etc. and
	germinated plants of two to three leaves should be transferred in to the Polythene bags
August	Sown seed in July transferred into the Polythene bags plots and Neem Seed should be cleaned from flesh and sown in the
	germinated plots.
September	Sowing of Neem, Kachnar, Acacia seeds etc. Polythene bags filling and collect seeds of Gauva
October	Polythene filling, Watering etc.
November	Polythene filling, Watering etc.
December	Polythene filling, Watering etc.

Seed collection and arrangement:

Months	Plants
January	Teak, Kagzi Neebu, Guava, Khair
February	Teak, Kagzi Neebu, Guava, Khair, Cutting of Teak, Aonla
March	Teak, Kagzi Neebu, Guava, Khairm Cutting of Teak, Aonla
April	Khair, Aonla, Bamboo and Arjun
May	Collect seeds of Kangi, Shemal and Gulmohar
June	Subabool, Babool, Shemal, Bamboo, Neem, Sheesham,
July	Neem, Vilayati Babool, Sesbania

3. Goat kids project

Shed Cost : Made by locally available material

S.No.	Particulars	Amount
1.	Thatch Structure / Khapparel Shed (Size: 15 X 300 Feet) with partition for one male	
	1. Khapperrel / Bamboo	4000.00
	2. Thatch, Puwal etc.	1000.00
	3. Rope Band & Patera	500.00
	4. Periphery boundary Kacchi / Stone / Pacca	3000.00
	5. Miscellaneous	1500.00
	Total	10000.00
Input Inv	olved	
S.No.	Particulars	Amount
1.	Kids goat No 20 @ 1000 / female	20000.00
2.	Adult Male	3000.00
	Total	23000.00
Recurring	y Cost	
S.No.	Particulars	Amount
l.	Labour- Grazing of Goat (Mandays yearly: One person /day @ Rs. 100 / day	36000.00
2.	Feed Cost (@ Rs 4000 / month Annually –)	
	Barley & Wheat under size	
	Chickpea under size	48000.00
	Green fodder (Leaf of subabool, lobia, grasses, legumes etc)	
	Wheat Straw	
3.	Medicines & Health care (FMD, Deworming & Vaccinations) annually charges and Training	6000.00
4.	Insurance (annually)	1200.00
	Total	91200.00
	Total Expenditure	124200.00

Farmers share is 1- Shed, 2- Labour, 3- Feed cost i.e Rs. 10000.00 + 36000.00 + 48000.00 = 94000.00 (Rs. Ninety four thousand only). Remaining amount Rs. 30200.00 (Rs. Thirty thousand and two hundred only) will be provided by the project. Term and condition is applied that Goat unit will be run in participatory mode by the Groups i.e. made by farming community for their livelihood improvement.

Farmers share – 94000.00

Project Share - 30200.00

Total 124200.00

4. Goat rearing project

Goats create employment to the rural poor including effective utilization of unpaid family labour. Goat rearing is going on in Bundelkhand with traditional grazing system; these include grazing on non-cultivated land, grazing on community land close to the villages. In this system animals are housed at night and let loose for grazing in the daytime with no supplementation with concentrate mixture. The production per animal is low but margin of profit is high as no investment is involved on feeding. Growing habits of grasses, development of pasture on non-cultivated lands is essential in participatory mode. Intensive production system where no grazing land is available the goats are reared on stall feeding. Under this system there is no risk of parasite infestation, maximum protection from adverse weather conditions, however, some space is provided for exercise. When sufficient grazing area is not available supplementary feeding is done in form of concentration mixture or green and dry fodder.

The integration of livestock with crop production is a means of establishing sustainable system that aim to optimize resources use. The realization of such aims will maximize the degree of self-reliance of the system, since a variety of products will be obtained with minimum inputs to maintain soil fertility. The varied activities on the integration farm create employment opportunities for all members of the extended family. Use of native pasture, crop residue and fibrous agro products supplementary feeding whenever necessary for efficient rumen fermentation and high animal productivity. The tree crops are highly appropriate for this region. They capture a large amount of solar enery and they produce sustainable yield of biomass. They reduce erosion, improve soil structure and fertility and plant with shallow roots can be grown under the trees.

Structures

Made by locally available material

S.No.	Particulars	Amount
1.	Thatch Structure / Khapparel Shed (Size: 15 X 300 Feet) with partition for one male	
	1. Khapperrel / Bamboo	4000.00
	2. Thatch, Puwal etc.	1000.00
	3. Rope Band & Patera	500.00
	4. Periphery boundary Kacchi / Stone / Pacca	3000.00
	5. Miscellaneous	1500.00
	Total	10000.00

2. Input involved

S.No.	Particulars	Amount
1.	Adult Female No 10 @ 3000 / female	30000.00
2.	Adult Male	3000.00
	Total	33000.00

3. Recurring Cost

S.No.	Particulars	Amount
1.	Grazing of Goat (Mandate yearly: One person /day @ Rs. 100 / day	36000.00
2.	Feed Cost (@ Rs 4000 / month Annually –)	
	Barley & Wheat under size	
	Chickpea under size	48000.00
	Green fodder (Leaf of subabool, lobia, grasses, legumes etc)	
	Wheat Straw	
3.	Medicines & Health care (FMD, Deworming & Vaccinations) annually charges	6000.00
4.	Insurance (annually)	1200.00
	Total	91200.00

Total Expenditure 1, 2 & 3 = 134,200.00

Output / Receipts from Goat Rearing Project

S.No.	Particulars	Amount
	i. Milk Production:	
1.	Milk Production (10 Goat)	22500.00
	(5 Month @ 1 lit / day / Goat = 1500 lit Sale @ Rs. 15/lit	
2.	Milk Production (4 Month) = 1200 lit @ Rs. 15/lit	18000.00
	Total	40,500.00
	B. Selling of Goat Kids (From six Month to 12 year)	
3.	First Production (after six month from starting) Average two kids (Assumed that ratio of male & female is 50:50)	
	10 male to be sale @ Rs. 1800 / kid	
	10 Female kids retain for next rearing (Rate calculated for next unit)	18000.00
		30000.00
4.	Second Production (Av. two kids/ goat)	
	10 Old Stock Production – 20 kids	
	(assumed that ratio of male & female is 50:50)	
	a. 10 Male sale @ Rs. 1500 / kid	15000.00
	b. 10 Female kids for next rearing @ 2000 / kid	20000.00
	Total	83000.00
	C. Goat Manure	

5.	After one year 50 q (if not grazed) if grazing is going on then vermi-compost / NADEP Unit is compulsory with	15000.00
	each unit	
	D. Permanent Parent Stock	
6.	11 Parent - one unit @ Rs. 4000 / Goat	44000.00
	Total	182500.00

Note:

- 1. Two Unit of Goat will be separated from this Unit after 14 months that input cost is included in lower side in respect of rates, which are prevailing in the market.
- 2. Next Two units will be further distributed to the Participatory groups.
- 3. One Acre of waste land will produce complete feed for one unit by the growing of Subabool (*Luceana leucocephala*) and grasses (Dhabroo, Dinanath etc.)
- 4. Growing of grasses and legumes on earthen work is compulsory (*Stylosanthes hamata*, Dina Nath, Dhabroo, *Cenchrus ciliaris*, etc.)
- **5.** Farmers share is 50% of above cost

Net Return from Goat Rearing Project: 182,500 – 134200 = 48,300.00

Feeding cost should be included in net return if complete watershed approach adopted, so this return will be just double.

Information related to the Goat Rearing

1. Research Institute:

Central Goat Research Institute, Farah, Makdoom, Mathura U.P.

2. Local Market for Parent Materials: Jamunapari & Barberi

- 1. Chaura, Kalpi, Jalaun U.P.
- 2. Kosi, Mathura
- 3. Pukhranya, Kanpur, Dehat

5. Project on Cultivation of Medicinal & Aromatic Plants:

Name of Crop: Ashwaganda, Sarpgandha, Allovera (Gvarpatha)

Unit Economics:

Land Requirement: Five ha (Participatory) Machinery & Apparatus: Spade, Bucket, Moter (Pump) etc. – 30,000.00 Input required:

и.	beed & I fulling material		15,000.00
b.	Manure	-	20,000.00

	c. Miscellaneous		5,000.00	
Deau	- Cast	Total	40,000.00	
Recurring		.) 15,000.0	00	
Workon 6	Electric / Pump set (Diesel etc & Labours	.) 13,000.0		
<u>s. No.</u>	Particulars		No.	Amount (Rs)
1.	Full time Labour		01 @ Rs. 100 / day	2600.00
2.	Casual Labour		05 for 20 days @ Rs. 100 / day	10000.00
2.	Total		05 101 20 days @ KS. 100 / day	12600.00
Othor Fy	penditure:			12000.00
	a. Transportation		10,000.00	
	b. Maintenance & Storage etc.	-	10000.00	
	c. Stationary & Poster etc.	-	5000.00	
		- Total	25000.00	
		Totui	2000.00	
Total Uni	t Cost			
Total Ulli	1. Machinery		30,000.00	
	2	-	40,000.00	
	 Input - Worker & labour 	-	12600.00	
		-		
	4. Other Expenditure	-	25000.00	
T	· 4	Total Expenditure	107600.00	
Unit Prof		and he is shared De	250,000,00	
	Total production from		250,000.00	
	Yearly Income from U		142400.00	
	or Seed & Other Material used in Un			
	Institute of Medicinal & Aromatic F	lants (CIMAP)		
P.O. – Rai	m Sagar, Mishara Nagar , Lucknow			
	Grinding Project			
		Rent Rs. 1500.00 per Mont	h	
2. Capaci		orking days		
	6480	kg Chilly Powder		
	6000	kg Coriander Powder		
	6960	kg Haldi		

1200 kg Garam Masal Job Work

3. Machinery Required

S.No.	Particulars		No.		Rate	Total Amount (Rs)
1.	Pulverizer (5 horse power)		01		37000.00	37000.00
2.	Packaging Machine		01		12000.00	12000.00
3.	Taraju, Bant etc		01		4500.00	4500.00
4.	Electrification		01		3500.00	3500.00
	Total					57000.00
Working	Capital / Month				·	
4. Raw M						
S. No.	Items	Quantity		Rate	9	Amount (Rs)
1.	Chilly	540 kg		40 /	kg	21600.00
2.	Haldi	580 kg		30 k		17400.00
3.	Coriander	500 kg		35	~	17500.00
4.	Jeera	20 kg				5500.00
5.	Badi Ilaichi	30 kg				3500.00
6.	Kali Mirch	40 kg				9500.00
7.	Dal Chinni	30 kg				5000.00
8.	Laong	20 kg				2800.00
9.	Packaging Material	12.00				2500.00
	Total					85300.00
Workers	s & Labours	·				·
	1. Skilled Labour 01 @ Rs. 185 / day	5550.00				
	2. Helper 02 @ Rs. 100 / Day	6000.00				
	Total	11550	.00			
5. U	tilities Expenditure per Month					
	1. Electricity Expenditure	1000.				
	2. Water etc.	1000.				
	Total	2000.	00			
6. O	ther Expenditure per Month					
	1. Rent	1500.00				
	2. Postage / Stationary Expenditure	500.0				
	3. TA. Transportation etc.	2000.	00			

4. Insurance		500.00
5. Administrative exp	enses	1200.00
Total		5700.00
Capital Required per Month		
1. Raw Material		85300.00
2. Worker & Labour		11550.00
3. Utilities Exp.		2000.00
4. Other Exp		5700.00
Total		104550.00
Total Project Cost		
A. Machinery & Tool	8	57000.00
B. Capital Running		104550.00
Total		161550.00
Entrepreneur Share	— :	- 50 %
Implementing agency share	- 50 %	
Assumed Profit		
Particulars	Quantity	Rate
Coriander Powder	6000 kg	Rs 60 / kg
Michi Powder	6480	Rs 65 / kg
Haldi Powder	6960 kg	55 / kg
Garam Masal	1200	165 / kg
Job work		ž
	Total	

Amount (Rs) 360000.00 421200.00 382800.00 192000.00 150000.00 1506000.00

7. Oil Expeller Project
 1. Land Requirement;
 2. Capacity:

1250 Sq Feet Rent Rs. 1200.00 per Month 300 working days 50 kg Mustard / hour 40 % Job Work

3. Machinery Required

S.No.	Particulars	No.	Rate	Total Amount (Rs)
1.	Oil Expeller (6 Volt Ave. 50 kg / hr) 7 HP Motor	01	48000	48000.00
2.	Filter Press	01	15000.00	15000.00
3.	Shaft, Patta etc.	-	7500.00	7500.00
4.	Electrification & furniture	-	15000.00	15000.00
	Total			85500.00

Working Capital / Month

4. Raw Material

S. No.	Items	Quantity	Rate	Amount (Rs)
1.	Mustard	4500 kg	18 / kg	81000.00
	Total			81000.00

5.	Workers & Labours	
	1. Skilled Labour 01 @ Rs. 185 / day	5550.00
	2. Helper 01 @ Rs. 100 / Day	2600.00
	Total	8150.00
6.	Utilities Expenditure per Month	
	1. Electricity Expenditure	3500.00
	2. Water etc.	1000.00
	Total	4500.00
7.	Other Expenditure per Month	
	1. Rent	1200.00
	2. Postage / Stationary Expenditure	500.00
	3. TA. Transportation etc.	2000.00
	4. Insurance	500.00
	5. Administrative expenses	1200.00
	Total	5400.00
8.	Capital Required per Month	
	1. Raw Material	81000.00
	2. Worker & Labour	8150.00
	3. Utilities Exp.	4500.00
	4. Other Exp	5400.00

Т	otal	99050.00	
Total Project Cost			
A. Machinery & T	Tools	85500.00	
B. Capital Runnin	g	99050.00	
Т	otal	184550.00	
Entrepreneur Share	-50 %		
Implementing agency share	- 50 %		
Assumed Profit			
Particulars	Quantity	Rate	Amount (Rs)
Mustard Oil	19440	Rs 60 / kg	1166400.00
Cake	34590	Rs15 / kg	518850.00
Job Work	-	-	550000.00
	Total		2235250.00

8. Papad Making Unit

1. Land Requirement;	1000 Sq Feet Rent Rs. 1000.00 per Month
2. Capacity:	300 working days
	6960 kg urd Papad

4620 kg Moong Papad

3. Machinery Required

S.No.	Particulars	No.	Rate	Total Amount (Rs)
1.	Papad Making Machine (with ¹ / ₄ HP motor)	01	28000.00	28000.00
2.	Aata mixing machine (with motor)	01	25000.00	25000.00
3.	Loi making Machine (with motor)	01	27000.00	27000.00
4.	Loi Pressing Machine hand running	01	3500.00	3500.00
5.	Other Pans & Apparatus	-	-	5000.00
6.	Electrification	-	-	7500.00
7.	Furniture & Other	-	-	7500.00
	Total			103500.00

Working Capital / Month

4. Raw Material

S. No.	Items	Quantity	Rate	Amount (Rs)
1.	Moong Aata	350 kg	30 kg	10500.00
2.	Urd Aata	495 kg	35 kg	17352.00
3.	Jeera	20 kg	55 kg	1100.00
4.	Papad Khar	33 kg	20 / kg	660.00
5.	Salt	33 kg	10 / kh	330.00
6.	Hing	1 kg		150.00
7.	Lal Mich, Kali Mirch,			2000.00
8.	Other packing material			5000.00
	Total			37092.00
Worl	kers & Labours	·		· · · · · · · · · · · · · · · · · · ·
	1. Skilled Labour 01 @ Rs. 185 / day	5550.00		
	2. Helper 02 @ Rs. 100 / Day	5200.00		
	Total	10750.00		
5.	Utilities Expenditure per Month			
	1. Electricity Expenditure	750.00		
	2. Water etc.	1000.00		
	Total	1750.00		
6.	Other Expenditure per Month			
	1. Rent	1000.00		
	2. Postage / Stationary Expenditure	500.00		
	3. TA. Transportation etc.	2000.00		
	4. Insurance	500.00		
	5. Administrative expenses	1200.00		
	Total	5200.00		
7.	Capital Required per Month			
	1. Raw Material	37092.00		
	2. Worker & Labour	10750.00		
	3. Utilities Exp.	1750.00		
	4. Other Exp	5200.00		
	Total	54792.00		
Total]	Project Cost			
	A. Machinery & Tools	103500.00		

B. Capital Runn	54792.00	
	Total	158292.00
Entrepreneur Share	-50 %	
Implementing agency share	- 50 %	

Assumed Profit

Particulars	Quantity	Rate	Amount (Rs)
Moong Papad	4620 kg	Rs 66 / kg	304920.00
Urd Papad	6960 kg	Rs75 / kg	522000.00
	Total		826920.00

9. Wooden Furniture Unit

1. Land Requirement;

40 X 20 Feet Rent Rs. 2000.00 per Month 300 working days

2. Capacity: 3. Machinery Required

S.No.	Particulars	No.	Rate	Total Amount (Rs)
1.	Aari, Rabdha, Hammer, etc.	-	-	18000.00
2.	Small Aara Machine (1/2 HP Motor)	01	38000.00	38000.00
4.	Other Pans etc.	-	-	5000.00
	Total			61000.00

Working Capital / Month 4. Raw Material

4. Kaw Material						
S. No.	Items		Quantity	Rate	Amount (Rs)	
1.	Sheesham, Teak wood etc.		-	-	150000.00	
2.	Keel, Pench, Primar, etc.		-	-	12000.00	
3.	Favicole, Ply wood, Sun Mica eyc.		-	-	25000.00	
		Total			248000.00	

5. Workers & Labours

6.

1. skilled Karigar @ 250 / Day	7500.00
2. Labour 02 @ Rs. 100 / Day	5200.00
Total	12700.00
Other Expenditure per Month	
1. Rent	2000.00

1. Rent

2. Postage / Stationary I	Expenditure	500.00
3. TA. Transportation et	tc.	2000.00
4. Insurance		500.00
5. Administrative expen	ses & Sale Rapper etc.	2500.00
Total	**	7500.00
7. Capital Required per Month		
1. Raw Material		248000.00
2. Worker & Labour		12700.00
3. Other Exp		7500.00
Total		268200.00
Total Project Cost		
A. Machinery & Tools		61000.00
B. Capital Running		268200.00
Total		329200.00
Entrepreneur Share	- 50 %	
Implementing agency share	- 50 %	
Assumed Profit		
Doutionlong	Quantity	Data

Particulars	Quantity	Rate	Amount (Rs)
Furniture made	-	Per month	2,62000.00
	300 days / Years		2620000.00
	Total		800000.00

10. Mini Dal Mill Unit	
1. Land Requirement;	1250 Sq Feet Rent Rs. 1200.00 per Month
2. Capacity:	300 working days
	10 quintal / day
	40 % Job work (Community Basis)

3. Machinery Required

S.No.	Particulars	No.	Rate	Total Amount (Rs)
1.	Mini Dal Mill (IIPR Kanpur)	01	42000	42000.00
2.	Other Utensils	-	-	5000.00
3.	Shaft, Patta etc.	-	7500.00	7500.00
4.	Other (electric etc.)	-	-	3000.00
	Total			57500.00

Working Capital / Month

4. Raw Material

S. No.	Items	Quantity	Rate	Amount (Rs)
1.	Urd, Moong, chickpea, Pea	100 q	2500 / q	250000.00
	Total			250000.00

5.	Workers & Labo	urs	
	1. Skilled Labour 01 @ Rs. 185 / day		5550.00
	2. Helper 01 @ Rs. 100 / Day		2600.00
	Total		8150.00
6.	Utilities Expenditure per Month		
	1. Electricity Expenditure		3500.00
	2. Sailling 7 Drying etc		7500.00
	Total		11000.00
7.	Other Expenditure per Month		
	1. Rent		1200.00
	2. Postage / Stationary Expenditure		500.00
	3. TA. Transportation etc.		2000.00
	4. Insurance		500.00
	5. Administrative expenses		1200.00
	Total		5400.00
8.	Capital Required per Month		
	1. Raw Material		250000.00
	2. Worker & Labour		8150.00
	3. Utilities Exp.		11000.00
	4. Other Exp		5400.00
	Total		274550.00
Total	Project Cost		
	A. Machinery & Tools		57500.00
	B. Capital Running		274550.00
	Total		332050.00
	preneur Share	- 50 %	
Imple	menting agency share	- 50 %	

Assumed Profit

Particulars	Quantity	Rate	Amount (Rs)
Dal of different kind	1500 q	Rs Ave 3000 / q	4500000.00
Job Work	-	-	50000.00
	Total		500000.00

11. Small Dairy Farm Unit

1. Land Requirement;

5 Buffaloes/Cows Unit Requires: 400 Sq Feet covered area (thatched) made by local material and Approximately 1000 sq feet open area

Rent Rs. 2000.00 per Month

2. Capacity: 5 Animal Unit

3. Live Stock & Machinery Required

S.No.	Particulars	No.	Rate	Total Amount (Rs)
1.	Buffaloes / Cows (Murra/ Tharparkar)	05/05	30000 / animal	150000.00
2.	Milk Can	06	500	3000.00
3.	Balty	10	150	1500.00
4.	Chaff cutter (with Motor)	01	3500	3000.00
5.	Other pans etc.	-	-	2000.00
	Total			159500.00

Working Capital / Month

4. Raw Material

6.

S. No.	Items	Quantity	Rate	Amount (Rs)
1.	Bhusa / month	20 quintal	180 / q	3600.00
2.	Green Fodder / Concentrate Feed etc.	6 kg/ Buffalo & 4 kg / Cow Appro. 1000 kg	10 kg	10000.00
	Total			13600.00

5. Workers & Labours

1. Skilled Labour 01 @ Rs. 185 / day	5550.00
2. Helper 02 @ Rs. 100 / Day	2600.00
Total	8150.00
Other Expenditure per Month	
1. Rent	2000.00
2. Postage / Stationary Expenditure	500.00
3. TA. Transportation etc.	2000.00

4. Insurance		1200.00
5. Administrative e	expenses	1200.00
Το	tal	6900.00
7. Capital Required per Mo	nth	
1. Raw Material		13600.00
2. Worker & Labou	ır	8150.00
3. Other Exp		6900.00
То	tal	28650.00
Total Project Cost		
A. Live Stock & M	lachinery/Tools	159500.00
B. Capital Running	5	28650.00
To	tal	188150.00
Entrepreneur Share	- 50 %	
Implementing agency share	- 50 %	
Assumed Profit		
Particulars	Quantity	Rate
Milk sale (peak)	9000 lit	Rs 15 / li

Particulars	Quantity	Rate	Amount (Rs)
Milk sale (peak)	9000 lit	Rs 15 / lit.	135000.00
Dry Spell	4500 lit	Rs. 15 / lit	67500.00
	Total		202500.00

12. Small Poultry Unit		
A. Capital Investment		
1. Broiler House Tubular Structure		
Approximately 1000 sq @ Rs 100 / sq :	feet = $1,00,000.00$	
2. Broiler Apparatus		
a. Adult Feeder 25 Nos.	@ Rs. 250 / No.	6250.00
b. Chick Feeder 25 Nos.	@ 75 / No.	1875.00
3. Brooder Automatic 03 Nos. @ Rs. 1250 / N	No.	3750.00
4. Electric Fitting etc.		7500.00
Total		119375.00
B. Working Capital:		
1. 1000 chicks one day old @ 12 / Chick		12000.00
2. Balanced Broiler Feed for 45 days @ 2.5 gm	/ chick Rs. 6.00 / kg	15,000.00
3. Poultry Liter (wooden Powder)		2500.00
4. Medicines		2000.00

5. Transport		1000.00
6. Working Sta		5500.00
7. Other Expen		5000.00
	Total	43000.00
Total Unit Co		
	1. Capital Investment –	119375.00
	8 1	3000.00
	Total	162375.00
Entrepreneur S	hare - 50 %	
Implementing	agency share - 50 %	
Returns		
1. Broiler	: 1000 Birds (Live weight –1.30 kg) @ Rs. 70 / Bird	70000.00
	/ Manure	1500.00
•	Blank Gunny Bags	2500.00
	Total	74000.00
Total Five Cro	ops will made in a year, So Net Return =	3,70,000.00
	chanic Workshop	-, -, -,
1. Land Requir	-	er Month
2. Capacity:	300 working days	
2. oupuoloj.	Moror Bike, Tractor, Diesel Engine etc	
3. Machinery	Required	
S.No.	Particulars	No.
1.	Instruments	
2.	Shed etc	-
	Total	
4. Workers &	& Labours	1

Total Amount (Rs)

50000.00 50000.00 **100000.00**

Rate

-

4. Workers & Labours	
1. Skilled Labour 01 @ Rs. 185 / day	5550.00
2. Helper 01 @ Rs. 100 / Day	2600.00
Total	8150.00
5. Utilities Expenditure per Month	
1. Electricity Expenditure	3500.00
6. Other Expenditure per Month	
1. Rent	1200.00
2. Postage / Stationary Expenditure	500.00
3. TA. Transportation etc.	2000.00

4. Insurance			500.00			
	rative expenses		1200.00			
	Total		5400.00			
7. Capital	Required per Month					
1. Worker &			8150.00			
2. Utilities H	Exp.		3500.00			
3. Other Exp	p		5400.00			
	Total		17050.00			
Total Proje	ct Cost					
A. Machine		100	00.000			
B. Capital R	Running		17050.00			
	Total		117050.00			
Entrepreneu		- 50 %				
	ng agency share	- 50 %				
Assumed P				r		
Particulars		Quantity		Rate		Amount (Rs)
lob work		Rs. 20000/Month				240000.00
		Total				240000.00
 Barber Shop area Capacity: Machiner 	a / rent ; ry Required	Rs. 100.00 per Mon 300 working days				
S.No.	Particulars		N	0.	Rate	Total Amount (Rs)
	Instruments & Mirr	rors etc.				50000.00
2.	Shed etc		-		-	50000.00
	Total					100000.00
	rkers & Labours					
I. Skilled L	abour 01 @ Rs. 185 / da	ay 555	50.00			
5. Util	itiga Expanditure por	Month				
	l ities Expenditure per I y Expenditure		3500.00			
	y Experiance		5500.00			
6. Oth	er Expenditure per M	onth				
1. Rent	ier Experimente per M		00.00			
. Rom		100	0.00			

4. Insurance	500.00	
Tota	al 1500.00	
7. Capital Required per Mont	th	
1. Worker & Labour	5550.00	
2. Utilities Exp.	3500.00	
3. Other Exp	1500.00	
Tota	al 10550.0	0
Total Project Cost		
A. Machinery & Tools	100000.00	
B. Capital Running	10550.0	0
Tota	al 110550.	00
Entrepreneur Share	-50 %	
Implementing agency share	- 50 %	
Assumed Profit		
Particulars	Quantity	
Job work	Rs. 1500/Month	
	Total	

15. Rope making Unit (Linseed)

1. Land Requirement;	¹ ∕₂ acre
2. Capacity:	300 working days

3. Machinery, raw material & Building Required

S.No.	Particulars	No.	Rate	Total Amount (Rs)
1.	Rope making machine	01	35000	35000.00
2.	Decomposing structure	01	25000	25000.00
3.	Shed cum office	01	25000	25000.00
4.	Raw material (linseed stem)	20 ton	6000/ton	60000.00
	Total			145000-00

Rate

Amount (Rs) 180000.00

180000.00

4. Workers & Labours

1. Skilled Labour 01 @ F	Rs. 185 / day	5550.00
2. Helper 01 @ Rs. 100 /	Day	2600.00
-	Total	8150.00
5. Utilities Expend	liture per Month	
1. Electricity Expenditure	e	3500.00
	3.6 (1	

6. Other Expenditure per Month

1. Rent	1200.00
2. Postage / Stationary Expenditure	500.00
3. TA. Transportation etc.	2000.00
4. Insurance	500.00
5. Administrative expenses & marketin	g 1800.00
Total	6000.00
7. Capital Required per Month	
1. Worker & Labour	8150.00
2. Utilities Exp.	3500.00
3. Other Exp	6000.00
Total	17650.00
Total Project Cost	
A. Machinery & Tools	145000.00
B. Capital Running	17650.00
Total	162650.00
Entrepreneur Share	- 50 %
Implementing agency share	- 50 %
Assumed Profit	
Particulars	Quantity
Rope	15 ton rope / yr
Job work	-

Total

16. Organic Product Unit

S. No	Particulars	Description
1	Cereals	Duram Wheat – as grown by the local growers on small groups basis
2	Pulses	Chickpea, pea, lentil, Urd, Moong and Arhar
3	Fruits	Aonla

Rate

12000 / ton

Amount (Rs)

180000.00 50000.00

230000.00

Above crops to be identified according to the Agro climatic situation (Land, situations, irrigations etc)

Work Plan

- 1. Identification of commodities groups
- 2. Informations of groups and their land and farming system approach
- 3. Certification process
- 4. Practices for organic growing

Certification Charges For Five Years

S.No.	Details of Certification	Amount (Rs)
1	1 st year – Travel & Inspection 7000 / day	49000.00
	Report Preparation	5000.00
	Certification	5000.00
	Others (Stationary etc)	1000.00
	Total	60000.00
2.	2 nd year	60000.00
3	3 rd year	60000.00
4	4 th Year	60000.00
5	5 th year	Self by the groups
	Total	240000.00
	PIA Share – 50 %	120000.00
	Group Share – 50 %	120000.00

17. Seed Production and Seed Bank

Existing Problem: Seed replacement

S. No.	Particulars		Analysis of Problem		
1.	Quality of Seed	Very poor	Low Yield of Crops		
2.	Availability of Seed	Untimely	Effect the Yield of crops		
3.	Seed Rate (at the time of sowing)	Higher 1.5 to 2.0 times then recommendation	Money loss		
4.	Productivity	Very Low	Lack of awareness about seed and ICM		
5.	Replacement rate of Seed	Nil	Low productivity		

Objectives:

- 1. To improve the quality of uncertified seed (farmer's seed) or Truthful seed at village level.
- 2. To increase the production and productivity.
- 3. To create awareness among the farmers about quality seed, seed rate and method of sowing.
- 4. To generate employment for unemployed rural youth.
- 5. To save grain for extra use and income.

6. Multiplication of seed of newly released varieties suitable for microclimate.

Work Plan:

- 1. Formation of advisory committees
- 2. Selection of farmers for seed production in groups.
- 3. Selection of land according to crops requirement.
- 4. Arrangement of seed before the main season from different universities / states.
- 5. Field visits of farmers for truthful seed and for certification by certified agencies
- 6. Marketing of seed by groups or e marketing.

Seed Multiplication Table

S. No.	Сгор	Required seed (q/ha)	Productivity q/ha	Area sown (ha)	Required seed
1.	Durum Wheat	1.00	18.00	40	40.00
2.	Chickpea	1.00	12.00	20	20.00
3.	Field Pea	1.00	12.00	20	20.00
4.	Lentil	0.60	11.00	20	12.00
5.	Urd	0.50	4.00	10	5.00
6.	Moong	0.50	4.00	10	5.00

Input Required

1. Seed:

S. No.	Сгор	Required seed (in quintal)	Approximately Rate of Seed (Rs./q)	Amount (Rs.)
1.	Durum Wheat	40.00	2500	100000
2.	Chickpea	20.00	6500	130000
3.	Field Pea	20.00	5400	108000
4.	Lentil	12.00	6000	72000
5.	Urd	5.00	5500	27500
6.	Moong	5.00	5600	28000
	Total			465500

2. Cost of Cultivation: From sowing to harvesting all activities should be done by the individual farmer under the Self help group.

3. Drying, Sorting & Cleaning at village level:

10 Labour Rs. @ 100 for one day for each crop for one ha produce for wheat

5 labour Rs. @ 100 for one day for each crop for one ha produce for pulses

Сгор	Area (ha)	Labour for one ha	Amount (Rs.)
Durum Wheat	40.00	1000	40000.00
Chickpea	20.00	500	10000.00
Field Pea	20.00	500	10000.00
Lentil	12.00	500	6000.00
Urd	5.00	500	2500.00
Moong	5.00	500	2500.00
Total	102		71000.00

4. Registration Fees (@ Rs 450 /ha

5. Packaging (hand Sieving machine)

5500.00

45900.00

6. Jute Bags (bags of 40 kg Total No. 3430)

51450.00

20000.00

7. Transportation & services charges etc. Total

122850.00

Income from one Unit & Area Expansion with good productivity

S. No.	Сгор	Production	Rate / q	Total Amount (Rs.)	Area can be sown
1.	Durum Wheat	720	2000	1440000	720
2.	Chickpea	240	5000	1200000	240
3.	Field Pea	240	4500	1080000	240
4.	Lentil	132	4500	594000	220
5.	Urd	20	4000	80000	40
6.	Moong	20	4200	84000	40
	Total	1372		4478000	1500

• At least 2 units will be established in the whole cluster of watershed by the self help groups.

• Interested SHGs will be preferred and village community work for seed bank and deposit seeds for higher production and increasing the area of the watershed under the cluster approach.

• The production from seed production unit will be used as seed bank by SHGs and other villagers of productivity enhancement. The SHGs will get money from other farmers on behalf of their seed and the benefited farmers will take an oath to spread these seed for higher productivity in the watershed to other farmers.

Outcomes from Seed Production & Seed Bank programme

S. No.	Сгор	Production	Total Amount (Rs.)	Two unit in cluster	Area can be sown (ha)
1.	Durum Wheat	720	1440000	2880000	1440
2.	Chickpea	240	1200000	2400000	480
3.	Field Pea	240	1080000	2160000	480
4.	Lentil	132	594000	1188000	440
5.	Urd	20	80000	160000	80
6.	Moong	20	84000	168000	80
	Total	1372	4478000	8956000	3000.00

• It is very clear from the production of seed and their bank which will run in participatory mode in the watershed

CAPACITY BUILDING PLAN

The capacity building of various stake holders will be given very high priority as the watershed is to be developed in participatory mode. Capacity building initiative plays very important role in human resource development of model watershed to replicate and train other watershed resource persons. The capacity building initiatives include training to NARS, government officials, CBOs, farmers and PIAs through field days, hands-on trainings, exposure visits to successful watersheds, training materials and etc. Need-based specialized training courses will be conducted. The details of the training is summarized in Table 6.1.

Table- 6.1: List of probable training institutes for capacity building

Sr. No.	Name of the Training Institute	Full Address with contact no, website & e-mail	Designation of the Head of Institute	Type of Institute	Area(s) of specialization
1.	Krishi Vigyan Kendra	Bharari, P.O Bhojla, Jhansi	Bharari, P.O Bhojla, Jhansi Programme Coordinator		Extension
2.	National Research Centre for Agro-Forestry	Gwaliar Road, Jhansi www.nrcaf.ernet.in	Director	ICAR (GoI)	Agro-Forestry/ Watershed Research and management
3.	Indian Grass Land & Fodder Research Institute	Gwaliar Road, Jhansi	Director	ICAR (GoI)	Grass Land & Fodder Research
4.	Bundelkhand University (Agriculture Division)	Kanpur Road, Jhansi	Head (Agronomy)	State University	Teaching & Training
5.	Govt. Agriculture School	Chirgaon, Jhansi	DD (Ag.)	State Govt.	Training to Farmers
6.	Govt. Poly-technique	Gwaliar Raod, Jhansi	Principal	State Govt.	Draft man training
7.	ITI	ITI, Colony, Jhansi	Principal	State Govt.	Draft man training

Sl. No.	Client Group	Title of the	Objectives	Coverage/Topics	Training	Training
		Programme/Duration/			Methodology	Institutions
		Time				
	Watershed	Participatory	To familiarize	Watershed concept,	Lectures on	KVK/
1.	Committee	watershed	the participants	Salient features of guidelines,	LCD	Research
	Members /	management	with various	Organizing people's groups,	Case	institutes/ NGOs
	Watershed		aspects of	Conducting meetings,	discussion	
	Secretaries	Duration :	participatory	Recording of proceedings,	Group	
	/Presidents /	2 days on each topics	management of	Office Management,	exercises	
	Field Staff etc		watershed	Accounting Procedures,	CDs & LCD	
				Book keepings and accounts,	Show	
				Maintenance of accounts and records,		
				Participatory Planning,		
				Preparation of schemes and estimates for		
				SHGs,		
				Implementation of works and activities,		
				Assisting execution and recording of works,		
				Effecting timely payments		
				Awareness creation		

Table- 6.2: Training to stakeholders on participatory watershed management

Table 6.3: Title of trainings to be organized for members of WC /WDT/field staff

Durum wheat and low water requiring wheat varieties screening and ICM
Interest of groups identification and implementation in collective manner.
Applied Vermi-culture, NADEP and composting technologies for livelihood
Advance vegetable production techniques
Fish culture in water harvesting structures
Post harvest and value addition
Advance oilseed production techniques.
Cultivation of medicinal and aromatic Plants.
Low cost feeding of milch animals
Integrated pest management in <i>kharif</i> and <i>rabi</i> pulses
Goatary, Dairy, rabbit farming and poultry development.

Integrated crop management in pulses and oilseeds
Advance pulse and oilseed production techniques
Advance extension skills and use of GIS and GPS in watershed
Training on information technology
Computer in agriculture marketing (internet)
Fabrication of gabion
Construction of low cost checkdam, well recharging unit
Monitoring and evaluation of impact of watershed management
Preparation of reports, leaflets, bulletins, etc.
Documentation of success stories
Development of nursery tech.

Table 6.4: Title of trainings to be organized for members of WC/SHGs/UGs/AGs/WDT at local level

Title of the	Objectives	Coverage/Topics	Training
Programme & Duration			Institutions/Methodologies
Orientation Program on Participatory Planning and Management	• To enhance the technical and managerial capability of participants	 Watershed concept, need and program Salient features of guidelines Roles and Responsibilities Leadership building Conducting meeting Farming systems approach Participatory planning for developments Preparation of group plan and Action Plan Group Formation and Management Conservation and Production measures Management of CPR Post Project Management of created assets Financial Arrangements INM,IPM Practices Benefit sharing 	KVK/ Research institutes/ NGOs • Lecture-cum- discussions • Practical exercise • Demonstration • Video film show Field visit

Capacity building programme will be continuous. For the sake of convenience each year may divided in two halves and training may be organized on

the topics mentioned in table 6.5.

Table 6.5: Title of trainings to be organized for stakeholders First half yearly programme

- Integrated Crop Management (ICM) of oilseeds and pulses of winter
- Integrated Crop Management (ICM in winter vegetables.
- Small Scale Dairy, goatary and poultry unit development for livelihood as option.
- Skill training on preservation of rural products (locally available) under household condition.
- Composite Fish Culture
- Production of Organic Mannure & their marketing
- Integrated pest management of wilt in pulses and gram pod borer in gram, yellow vein mosaic disease of urd and moong.
- Durum wheat and low water requiring wheat varieties screening and ICM
- Interest groups identification and implementation of units in collective manner.
- Applied Vermi-culture NADEP and composting technologies for livelihood and for sustainable development
- Integrated crop management in Groundnut and soybean
- Layout & plantation techniques of Aonla, Ber & Guava.
- Fodder production in *Kharif*
- Safe storage of grain and pulses
- Layout and construction / Rejuvenation of fishpond.

Second half yearly programme

- Integrated crop management in oilseed crops of *kharif & rabi* season
- Integrated crop management in vegetables of *kharif* season
- Green Fodder production in *Rabi*.
- Seed treatment and method of sowing in *Rabi* crops.
- Application of organic and inorganic fertilizers in fish culture ponds
- Soil and water conservation measures
- Control of collar rot disease in groundnut through seed treatment
- Integrated crop management in Rabi pulses.
- Integrated crop management in *Rabi* vegetables.
- Feeding technique of milch animals
- Balance use of feed fro fish production
- Low cost balanced feed for milch animals.
- Identification and eradication of weeds and predatory fish from pond.
- Seed treatment with bio-fertilizers

• Major disease and insect of mustard crop and their management

Table 6.6 Income and employment generating training programs for SHGs

Seed production technologies for pulses, cereals and oilseed

Preparation of organic manures

Off season vegetable growing

Back yard poultry farming

Seasonal fruit (Guava, Ber, Aonla) and vegetables (Tomato, Cauliflower, Pea) preservation, packing and marketing

Composite fish farming

Bee keeping management techniques

Value addition in pulses, oilseed, durum wheat (small scale)

Use of computer and communication technology for agriculture marketing.

Seed production of groundnut.

Vegetable nursery management.

Goatary management.

Mini dal mill

Value addition of different types of masala making, packing and marketing

Integrated fish culture cum horticultural crops

PHASING OF PROGRAMME AND BUDGETING

7.1 Finanacial phasing including administrative cost

Financial Phasing – IWMP –V, (MWS-09)

Sr. No.	Particulars	1st Year	2nd Year	3rd Year	4th Year	Total
1	Administrative Cost-10%	17.91	17.91	17.91	17.91	71.64
2	Monitering-1%	1.79	1.79	1.79	1.79	7.16
3	Evalution-1%	1.79	1.79	1.79	1.79	7.16
4	Entry Point Activity-4%	28.66	-	-	-	28.66
5	Institution & Capacity Building-5%	14.33	14.33	7.16	-	35.82
6	DPR-1%	7.16	-	-	-	7.16
7	Watershed Dev. Work-50%	71.64	107.46	107.46	71.64	358.20
8	Livelihood Activity-10%	57.31	7.16	7.16	-	71.64
9	Production System & Micro enterprises- 13%	18.63	55.88	18.63		93.13
10	Consolidation-5%	-	3.58	3.58	28.66	35.82
	Total	219.22	209.91	165.49	121.79	716.40

7.2 Monitoring and Evaluation

Monitoring of the project will be done at each stage and it will be carried out for both, process and outcome. Some community members will be trained and will be involved in participatory monitoring of various parameters and processes and the crop yields. The interventions, expenditure and other information will be displayed in the watershed Micro-watershed through wall writings. Besides trained community members, PIA/DWDU will also monitor the physical and financial progress of watershed development programme. Frontier technologies viz. GIS and Remote Sensing techniques will be used by the PIA/DWDU for monitoring and evaluation. The PIA shall submit quarterly progress reports (countersigned by the Watershed Committee (WC) President) to the DWDU for further submission to the SLNA. Sustainable and unbiased monitoring will be ensured by involving an independent agency. About 1 per cent of the total budget will be used on this activity.

7.2.1Plan for Evaluation

Watershed development activities bring about both tangible and intangible benefits. In order to quantify the benefits, impact analysis has been proposed.

Theme

It is presumed that as a consequence of watershed development activities there will be noticeable change in socio-economic status of inhabitants, cropping intensity, ground water recharge, crop diversification, fuel, fodder and small timber availability, livestock composition and milk production, etc. These indicators can be gauged over bench mark data both at the beginning and at the end of the project within the watershed.

Observations

The following indicators will be taken into account for quantitative and qualitative assessment. For the purpose, detailed questionnaires will be prepared and field observations will be carried out.

- Duration of availability of drinking water/irrigation and groundwater recharge
- Irrigation frequency and area under irrigation
- Changes in cropping pattern and cropping systems in the farmers fields along with productivity and incomes
- Soil health
- Satellite monitoring for vegetation cover and other parameters
- Fuel, fodder and small timber availability
- Livestock composition and productivity
- Periodic pest and disease monitoring will be done in major crops
- Socio-economic aspects including resource inventory
- Following indices will also be worked out as qualitative indicators of the watershed development:
- Land Improvement Index (LII)

- Crop Diversification Index (CDI)
- Cultivated Land Utilization Index (CLUI)
- Crop Fertilization Index (CFI)
- Induced Watershed Eco-Index (IWEI)

The concurrent and post-project monitoring and evaluation would be conducted to assess the status of watershed related interventions. It will be done by an independent agency having similar experiences. About 1 per cent of the total budget will also be used on evaluation.

7.3 Physical and Financial-Targets and Outlays

S. No.	Activities	Nos./area	Amount (Rs. In Lakh)
1	Preparatory Phase		
	Entry Point Programme	-	28.66
	Institution & Capacity building	As per details in chapter 6	35.82
		Total	64.48
2	Watershed Works Phase		358.20
	Field/Contour /Graded Bunds (FB/CB/GB)	1885	113.37
	Marginal Bunds (MB), Peripheral Bunds (PB), Submerged Bunds (SB)	3167	190.77
	Earthen Check Dam (CD)/ Gully plug/ Water harvesting bunds (WHB)	918	55.57
	Checkdam/Drop Structure	36	203.67
	Drop spillway	18	83.25
	Field drainage structures	900	68.40
	Gabion	900	51.30
	Well recharge unit	90	9.00
	Through PIA		358.20
	Through Convergence*		417.13
		Total	780.70
3	Livelihood Activities	As per details in chapter 7	71.64
4	Production System		93.13
	Agriculture Production system		
	Demonstration**	360	14.40
	On Farm Testing**	270	6.75
	Seed Multiplication by community	180 ha	9.00
	Vegetable production	180 ha	4.50

Horticulture		0.00
Demonstration	36	14.40
Orchard/Planatation (Fruit tree/Forest seedlings)	45 ha	4.50
Animal Husbandry		0.00
Animal camps	18	2.70
Local Tharparkar / Gir Bull Breeding	9	4.50
Feed and fodder utilization	90 ha	2.25
Agroforestry		0.00
Aonla based	90 ha	19.94
Guava based	90 ha	19.49
Lemon based	90 ha	20.94
Bael based	90 ha	19.04
Ber based	90 ha	21.35
Silvi pastural system	90 ha	34.38
Through PIA		93.13
Convergence*		104.99
Production System		198.13
Project Cost		1109.57
Preparatory Phase		64.48
Administrative Cost-10%		71.64
Evalution-1%		7.16
DPR-1%		7.16
Monitoring - 1%		7.16
Consolidation-5%		35.82
Activities under IWMP		522.97
Total PIA		716.40
Total Convergence*		522.12
Total Project Cost	`	1238.52
*Convergence under MNREGA, NHM, FSM, ATMA etc		

Physical Target for Wat	tershed Works			Y	ear		
	Activity		2010-11	2011-12	2012-13	2013-14	Total
	Agro-forestry	ha	112.50	112.50	225.00	0.00	450.00
Land Development	Horticulture	ha	22.50	22.50	45.00	0.00	90.00
	Agriculture	ha	247.50	247.50	495.00	0.00	990.00
	Pasture	ha	22.50	22.50	45.00	0.00	90.00
Soil Moisture Conservation (SMC)	Contour Farming/Contour Bunding/ Graded Bunding/ Field Bunding	ha	377.00	754.00	377.00	377.00	1885.00
	Earthen Checks	cu.m.	91590.26	137385.38	137385.38	91590.26	457951.28
	Gully Plugs	cu.m.	15844.56	23766.84	23766.84	15844.56	79222.81
	Gabion Structures	No	180.00	270.00	270.00	180.00	900.00
Engineering Measures	Field Drainage Structures	No	180.00	270.00	270.00	180.00	900.00
	Drop Spill Way / Checkdam	No	22.50	22.50	9.00	0.00	54.00
	Well Recharge Unit	No	22.50	45.00	22.50	0.00	90.00
			MWS	No/Area	Total (ha)	per ha cost	Total
	No. of on farm activates	No	19	19	37	0	75
Livelihood	No. of beneficiaries	No	225	225	450	0	900
Livennood	No. of off-farm activities	No	14	14	27	0	54
	No. of beneficiaries	No	23	23	45	0	90
Production	Area	ha	457	914	457	457	2286
System	No. of beneficiaries	No	1143	2286	1143	1143	5715

7.4 Year wise phasing of interventions/activities for development of watershed

Financial Target for	Watershed Works		Unit		3	Year		Rs in lacs
Activity		Quantity		2010-11	2011-12	2012-13	2013-14	Total
Land Development	Agroforestry	450.00	На	24.75	24.75	49.50	0.00	99.00
	Horticulture	9.00	На	0.45	0.45	0.90	0.00	1.80
	Agriculture	990.00	На	9.90	9.90	19.80	0.00	39.60
	Pasture	90.00	На	0.90	0.90	1.80	0.00	3.60
Soil Moisture Conservation (SMC)	Contour Farming/Contour Bunding/ Graded Bunding/ Field Bunding	1885.00	На	22.62	45.24	22.62	22.62	113.10
Vegetative and	Earthen Checks	457951.28	cum	37.75	56.63	56.63	37.75	188.77
Engineering Measures	Gully Plugs	79222.81	cum	11.11	16.67	16.67	11.11	55.57
	Gabion Structures	900.00	No.	9.72	14.58	14.58	9.72	48.60
	Field Drainage Structures	900.00	No.	13.68	20.52	20.52	13.68	68.40
	Drop Spill Way / Checkdam	54.00	No.	70.20	70.20	35.10	0.00	175.50
	Well Recharge Unit	90.00	No.	2.25	4.50	2.25	0.00	9.00
	To tal			203.34	264.34	240.37	94.89	802.94
Livelihood	No. of on farm activates		No	11.21	11.21	22.41	0.00	44.82
	No. of beneficiaries		No	-	-	-	-	-
	No. of off-farm activities		No	6.75	6.75	13.50	0.00	27.00
	No. of beneficiaries		No	-	-	-	-	-
Production System	Area		ha	18.29	36.58	18.29	18.29	91.44
	No. of beneficiaries		No	-	-	-	-	-
	Total			36.24	54.53	54.20	18.29	163.26

7.5 Year wise financial phasing of interventions/activities for development of watershed

7.6 Plan of Convergence

Several schemes viz. MGNREGS, ATMA, Food Security Mission, NHM, etc. of Central and State Govt. are running in project area. To make the watershed programme successful, convergence of different schemes is necessary as the budgetary provision made under IWMP is not sufficient to saturate the watershed. In this case the convergence of Rs. 485.16 lakh s will be made through convergence of different schemes under different activities which details are as follows:

Physical Target for Wa	tershed Works		Year				
Activity		2010-11	2011-12	2012-13	2013-14	Total	
Land Development	Agro-forestry	ha	22.50	22.50	45.00	0.00	90.00
	Horticulture	ha	4.50	4.50	9.00	0.00	18.00
Soil Moisture Conservation (SMC)	Contour Farming/Contour Bunding/ Graded Bunding/ Field Bunding	ha	377.00	754.00	377.00	377.00	1885.00
Engineering Measures	Earthen Checks	cu.m.	66166.00	99249.00	99249.00	66166.00	330830.00
	Gabion Structures	No	27.00	40.50	40.50	27.00	135.00
	Field Drainage Structures	No	27.00	40.50	40.50	27.00	135.00
	Drop Spill Way / Checkdam	No	3.75	3.75	1.50	0.00	9.00
Production	Area	ha	524	1048	524	524	2619
System	No. of beneficiaries	No	1310	2619	1310	1310	6548

7.6.1 Year wise phasing of interventions/activities for development of watershed under convergence

7.6.2 Year wise financial phasing of interventions/activities for development of watershed under convergence

Financial Target for W	atershed Works	Quantity	Unit	Year				Rs in lacs
Activity				2010-11	2011-12	2012-13	2013-14	Total
Land Development	Agroforestry	90.00	Ha	4.95	4.95	9.90	0.00	19.80
	Horticulture	18.00	Ha	0.90	0.90	1.80	0.00	3.60
Soil Moisture Conservation (SMC)	Contour Farming/Contour Bunding/ Graded Bunding/ Field Bunding	1885.00	На	22.62	45.24	22.62	22.62	113.10
Vegetative and	Earthen Checks	330830.00	cum	46.77	70.15	70.15	46.77	233.83
Engineering Measures	Gabion Structures	135.00	No.	1.46	2.19	2.19	1.46	7.29
	Field Drainage Structures	135.00	No.	2.05	3.08	3.08	2.05	10.26
	Drop Spill Way / Checkdam	9.00	No.	11.70	11.70	5.85	0.00	29.25
	To tal			90.45	138.20	115.58	72.90	417.13
Production	Area		ha	20.95	41.90	20.95	20.95	104.76
System	No. of beneficiaries		No	-	-	-	-	-
	Total			38.91	59.86	56.86	20.95	176.58

7.7 Benefit Cost Analysis: Crop outcomes Pre Project Scenerio

S.No	Name of Crop (Season	Area	Production	Productivity	Cost/	Rate	Gross	Total Cost	Net	Net Retur	B:C Rati
•	wise)	(ha)	(quintal)	q/ha	ha	Rs/q	Return Rs	Rs	Return	n /ha	0
1	Til (Sesamum)	760.00	1292.00	1.70	5500	6500	8398000	4180000	4218000	5550	2.0
2	Urd	660.00	2244.00	3.40	7500	4200	9424800	4950000	4474800	6780	1.9
3	Moong	460.00	1426.00	3.10	7750	4600	6559600	3565000	2994600	6510	1.8
4	Arhar	270.00	1701.00	6.30	9580	4350	7399350	2586600	4812750	17825	2.9
5	Jawar	300.00	1440.00	4.80	4500	1400	2016000	1350000	666000	2220	1.5
6	Jawar + Arhar	350.00	2660.00	7.60	8544	3250	8645000	2990400	5654600	16156	2.9
	Total	2800.00	10763.00								
1	Lentil	1110.00	6271.50	5.65	8850	3850	24145275	9823500	14321775	12903	2.5
2	Field Pea	940.00	6815.00	7.25	7520	3200	21808000	7068800	14739200	15680	3.1
3	Chickpea	870.00	5533.20	6.36	7985	3150	17429580	6946950	10482630	12049	2.5
4	Wheat	1440.00	27000.00	18.75	11250	1275	34425000	16200000	18225000	12656	2.1
5	Barley	170.00	2924.00	17.20	9850	1025	2997100	1674500	1322600	7780	1.8
6	Linseed + Chickpea (Mixed)	220.00	1727.00	7.85	9845	3650	6303550	2165900	4137650	18808	2.9
7	Linseed + Lentil (Mixed)	270.00	1741.50	6.45	8954	3860	6722190	2417580	4304610	15943	2.8
8	Mustard / Rai	310.00	1395.00	4.50	9586	3650	5091750	2971660	2120090	6839	1.7
	Total	5330.00	53407.20								
	Single crop Area	3770.00									
	Double crop area	2180.00									

(Cucurbits, Cole crops, Egg Plant, Tomato, Potato etc)	45	3200	71.11	13000	500	1600000	585000	1015000	22556	2.7
						162965195	69475890	93489305		2.35
Total No. of families	3930	•	et Return from ulture	23789						
Total cultivable area in MWS		7136.92		Over All B:C		2.35				
Cropping Intensity	114.55	%								

Post Project Scenario

S.No.	Name of Crop (Season wise)	Area (ha)	Production (quintal)	Productivity q/ha	Cost/ ha	Rate Rs/q	Groos Return Rs	Total Cost Rs	Net Return	Net Return /ha	B:C Ratio
1	Til (Sesamum)	950.00	1852.50	1.95	5800	6500	12041250	5510000	6531250	6875	2.2
2	Urd	825.00	3011.25	3.65	7600	4500	13550625	6270000	7280625	8825	2.2
3	Moong	575.00	2081.50	3.62	7800	4950	10303425	4485000	5818425	10119	2.3
4	Arhar	337.50	2193.75	6.50	10350	4450	9762188	3493125	6269063	18575	2.8
5	Jawar	375.00	1950.00	5.20	6500	1650	3217500	2437500	780000	2080	1.3
6	Jawar + Arhar	437.50	3412.50	7.80	9544	3890	13274625	4175500	9099125	20798	3.2
	Total	3500.00	14501.50								
1	Lentil	1276.50	7378.17	5.78	9105	4560	33644455	11622533	22021923	17252	2.9
2	Field Pea	1081.00	7891.30	7.30	7842	3360	26514768	8477202	18037566	16686	3.1
3	Chickpea	1000.50	7103.55	7.10	8023	3275	23264126	8027012	15237115	15230	2.9
4	Wheat	1656.00	33384.96	20.16	12620	1450	48408192	20898720	27509472	16612	2.3
5	Barley	195.50	3968.65	20.30	10236	1250	4960813	2001138	2959675	15139	2.5
6	Linseed + Chickpea	253.00	2082.19	8.23	10236	3750	7808213	2589708	5218505	20627	3.0

	(Mixed)										
7	Linseed + Lentil (Mixed)	310.50	2285.28	7.36	9456	4012	9168543	2936088	6232455	20072	3.1
8	Mustard / Rai	356.50	1942.93	5.45	9541	3785	7353971	3401210	3952761	11088	2.2
	Total	6129.50	66037.03								
	Single crop Area	4411.92									
	Double crop area	2725.00									
	(Cucurbits, Cole crops, Egg Plant, Tomato, Potato etc)	70	7714	110.20	15260	650	5014100	1068200	3945900	56370	4.7
							228286793	87392935	140893859		2.61
	Total No. of families	3930	Per family Net I	Return from	35851						
			Agricult	ture							
	Total cultivable area in MWS		7136.92		Over All B:C		2.61				
	Cropping Intensity	135.91	%								

Animal outcomes Pre Project Scenerio

Particulars	Cows	Buffaloes	Goat	Bullocks
Total Animals in Micro watershed Area	6000	5400	13000	1100
Milking Animals	2800	2500	3500	
Average Milk Production Lit. / day	3640	520.8	140	
Average Milk Production /Animal/ day	1.3	3.5	0.4	
Sale of Milk per day (Rs) @ Rs 15/Lit	54600	7812	2100	

8190000	78120	12600	
		7500	
		2500	
		18750000	
			1100
			36000
			19800000
			46830720
3930			11916.21
			6020
			1.98
			7500 2500 18750000 18750000

Post Project Scenario

Particulars	Cows	Buffaloes	Goat	Bullocks
Total Animals in Micro watershed Area	7200	7020	18200	1320
Milking Animals	3600	3500	5000	
Average Milk Production Lit. / day	5760	12600	2500	
Average Milk Production /Animal/ day	1.6	3.6	0.5	
Sale of Milk per day (Rs) @ Rs 15/Lit	86400	189000	37500	
Average 150 day milking days & Goat 90 days in a year (Total Rs)	12960000	1890000	225000	
Meat Animals			12000	
Average rate of one kids Rs			2800	
Total Sale in a year Rs			33600000	
Working Animals (Bullocks)				1320
One year work one agriculture fields 180 days @ 200/ day (One pair)				36000
Total Work value of all working animals				23760000
Total value earned by animals in a year				72435000
Total INCOME/FAMILY	3930			18431.30
Total Expenditure / family				7000
B:C Ratio				2.63

Net Income / Family	Pre Project Scenerio	Post Project Scenario
Agriculure	23789	35851
Animal Husbandry	11916	18431
Total (Ag+AH)	35705	54282
Over All B:C of MWS	Pre Project Scenerio	Post Project Scenario
Agriculure	2.35	2.61
Animal Husbandry	1.98	2.63
Over All B: C MWS	2.16	2.62

CONSOLIDATION AND WITHDRAWAL STRATEGY

9. Consolidation and Withdrawal Strategy

Success of any program depends on sustainability of the various watershed interventions and sustainability can only be achieved through active participation of community. Active participation and cooperation of community can be ensured by building their capacities through exposures and trainings. From the beginning emphasis will be on capacity building and empowerment of stakeholders. The Watershed Committee, SHGs, Area Groups, Users Group and other CBOs will be established, trained, and strengthened to continue development after withdrawal of PIA. By building economic activities through CBOs community participation will be sustained. The PR&D approach along with demand driven interventions will reduce dependency on subsidies. Contributions from the community will be ensured for the entire activities to develop sense of belongingness and these contributions will be deposited to the account of Watershed Development Fund. Watershed Development Fund will also be strengthening through donations from the individual and institutions and the CBOs will be trained to run watershed as business model on sustainable basis. The tangible economic benefits along with empowerment and hand holding by PIA will empower the CBOs to develop and sustain the watershed activities after withdrawal of the PIA. Community organizations will withdraw the money from the WDF to maintain the asset created during the implementation phase. The consolidation phase will also include writing of project completion report, documentation of success stories, making films, leaflets, bulletins and the lessons learnt. The expenditure will be done as per the Common Guidelines for Watershed Development Projects 2008.

9.1 Employment Generation and Checking Migration

There had been very heavy migration from Bundelkhand region. During drought years, It is as high as 39% against an average migration rate of 11%, in other regions of Uttar Pradesh towards northern part of the country, specially the states of Delhi, Punjab and Haryana, as agriculture labours, factory workers, rickshaw pullers etc. The major reason attributed to high rate of migration is continuous drought in the region and absence of any other alternate livelihood opportunity, in spite of several anti-poverty programmes.

Due to watershed management the cropping intensity will be increased by around 21 per cent, in turn acreage in agricultural activities will be increased by about 1275 ha. Therefore, an additional employment of about 1, 27,500 man days will be generated annually. Therefore, no migration in search of livelihoods is expected after implementation of watershed programme.

9.2 Other Expected Outcome*

The following tangible benefits are expected after implementation of the project:

- Runoff will be reduced by about 30 per cent, however soil and nutrient loss may be reduced up to 40 per cent from the watershed.
- Irrigation intensity may be increased to 40 per cent from present 20 per cent life saving irrigation.
- Surface water in nallah may be available for more than 10 months against 4-5 months at present.
- Average ground water recharge of about 4 m may be easily obtained after implementation of the programme
- Productivity of crops may be increased by about 30 per cent
- Significant saving of seeds may be obtained through crop demonstration with improved package of practices
- During implementation phase about 1,90,000 mandays will be created through the soil and water conservation measures and crop/agroforestry interventions.
- The over all B C ratio of the project is estimated to be 2.62 as compared to the 2.16 in pre project scenario (detailed analysis is given in Chapter 7)

*Above mentioned outcomes are based on the meta analysis of 636 watershed projects throughout the country done by ICRISAT, Hyderabad and practical experience of watershed management in Bundelkhand region.

9.3 Questions to be answered

This project will answer the following questions :

- 1. Will the measures taken for water harvesting sufficient enough to recharge the perched water table?
- 2. Will the soil and water conservation practices be helpful in combating drought?
- 3. Will alternate land use such as agroforestry land use system result in self reliance/prosperity in drought prone areas?
- 4. Can the strategies based on watershed basis yield fruitful results?
- 5. Response of the villagers towards the project and their participation in sustaining developed resources after whithdrawal of the project?
- 6. Will the formation of SHGs will help in savings and generation of self employment?

- 7. Will the watershed programmes improve the socio-economic conditions of the stake holders?
- 8. Will the watershed programme helps in capacity building of the stake holders for dissemination of various activities of watershed programme?
- 9. Will it sustain after project withdrawal?

9.4 Problems that could be solved as a results of this project/study

Following problems can be tackled in the proposed watershed :

- 1. Solving the problems of shortage of fuel, fodder, fruit and small timber requirement of villagers.
- 2. Creating water resources for ground water recharge availability of surface water for animal drinking and nistar purposes.
- 3. Increasing fertilizer consumption and improving NPK consumption ratio.
- 4. Optimizing crop productivity by putting more area under HYV and irrigation.
- 5. Increasing cropping intensity.
- 6. Promoting dairying through increased fodder availability.
- 7. Improving basic amenities and facilities like health, education, drinking water etc.
- 8. Increasing per capita income and thereby standard of living of farming community.
- 9. Increasing co-operative membership.
- 10. Increasing self employment.
- 11. Improving living standard of society.

DESIGN AND ESTIMATES OF ACTIVITIES

		D	esign of Checkdam/Drop str	ucture	
HYDROLOGIC D	ESIGN				
Area (ha)	125				
slope	0				
К	7.5				
a	0.2				
b	0.8				
n	1				
Time of Concentra	tion				
		Le.77	Se-0.385		
L (m)	700	155.14			
S	0		6.702847		
		hour	Tc + b	(tc+b) power n	
Тс	20	0.3374	1.087442	1.0838	
Intensity	·				
		Tr power a			
Tr	15	1.5847			
Ι		10.922			
Discharge					
			Taken		
	с	0.5	Coeff		
	Ι	109.22	mm/hr		
	А	125	ha		
	Q	18.962		Cumec	

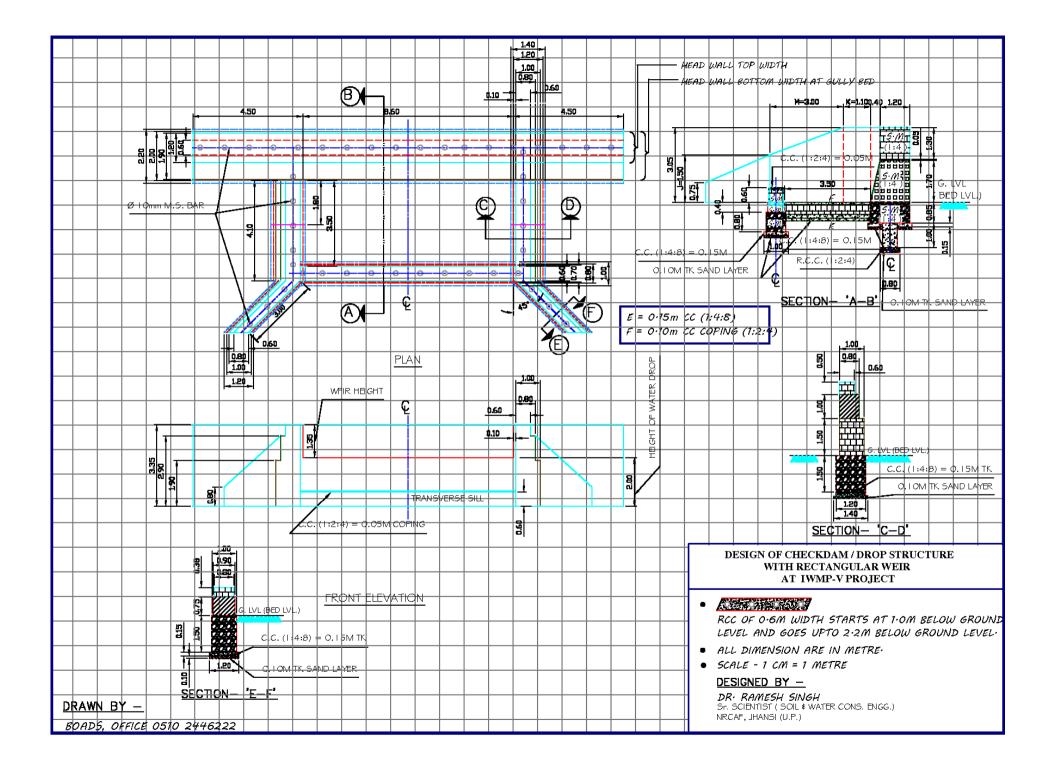
HYDRAULIC DESIGN	YDRAULIC DESIGN				
Length of crest weir (m)	Length of crest weir (m)				
Weir height (m)	Weir height (m)				
	Q = 1.71 * L * h power	(3/2)			
	h power 3/2	1.2894			
	h	1.1845	1	h1	
	h + free board	1.3029	1.3		
Depth of gulley					
Height of water drop (H	Height of water drop (H)			Say	1.7

STABILITY ANALYSIS								
Let	Let		Top width (m)	t	1			
]	Bottom width (m)	Т	1.6			
Weight of dam per un	Weight of dam per unit length (kg)		W	4862		W square	2E+07	
Horizontzl water pres	ssure (Kg)			Р	1445		P square	2E+06
Uplift pressure (kg)				U	(T*w*H)/2	1360		
Net downword force	(kg)			Wn	W-U	3502	Wn Square	1E+07
Resultant (kg)	Resultant (kg)			R				3788.4
				Н	1.7			
				Xbar		0.661538		
				Z		0.283607		
Point of Resultant (xh	bar+Z)					0.945146		
				EA		0.938462		
				P*H/3		818.8333		
				W*EA		4562.8		
				b/6		0.266667		

					b/2		0.8		
	e = xbar	+ Z- b/2			e (OF)		0.145146		
	fmax = Wn/b(1+e)		5*e/b)		fmax		3380.078		-
A Safety against sliding									
				(mu*W)/P			1.211765		
B Safety against overturning			(W*EA)/(P*H/3)			2.011773			
C Safety against Tension			e < b/6 or $b/6$ -e should be +ive			0.121521			
D Safety against Crushin						say	10000		
				hould be +ive			6619.922		
Depth of Foundation		1							
		Normal	scour depth, d	ln	0.473[Q/f]power1/3				
			Q (cumec)	18.962					
			Q (Cusec)	669.122					
			f is silt facto	r, take=	2				
			[q/f]		334.561				
			[q/f] power1	/3	6.94211				
			dn (ft)		3.28362				_
			dn (m)		1.0011				
		Maximu	ximum scour depth, dm		1.5*dn	1.50166			
								Technical Specification	
		Foundat	ion depth, D		1.33 dm	1.9972		2.00	
Minimum length of headwall extension (m)			•	E=3h+0.6 or 1.5F whichever is greater					
			F is net drop	from top of tr	ransverse sill to crest ll= h/3 0.433333				
			St= height of	f transverse sil			0.433333	0.45	
			F (m)	1.25					
			E (m)	4.5	or	1.875	say	4.50	
Length of Basin Lb									

		Lb (m)= F(2.28*h/F-	+0.52)	3.614		say	3.50	
Heig	ght of the sidewall at end sill is	s taken to be minimum	1.5h1,but more	e than H/2		•		
		J (m)	1.5h1	1.5	more than H/2	0.85	1.50	
Heig	ght of the sidewall at the weir	end						
		Equal to gully depth	1 3				3.00	
		M (m)	2(F+1.33h-J))		2.958	3.00	
		K (m)	Lb+.1-M			0.642	1.10	
Len	gth of Wing wall (WL)							
		WL = 2.25	h			2.925	3.00	
Dep	th of Toe Wall							
		h1+0.1				1.1	1.20	

WORK A	BSTRACT					
Sl. No.	Item	Specification (m)			Quantity (cum)	
		Length	Breadth	Depth		
	Clearing of site (Removal of trees, shrubs					
1	and bushes)	15.00	15.00			
2	Earth work					
	a) in hard soil Headwall Foundation	8.60	2.40	1.20	24.77	Effective depth will be 1.0 m
	b) in hard soil RHS of Headwall extension	4.50	2.40	3.20	34.56	Effective depth will be 1.0 m
	c) in hard soil LHS of Headwall extension	4.50	2.40	3.10	33.48	Effective depth will be 1.0 m
	d) in hard soil cutoff wall	17.60	1.20	1.00	21.12	
						Effective depth will be 1.50
	e)in hard soil side wall on both side	8.20	1.80	4.00	59.04	m
						Effective depth will be 1.20
	f) in hard soil Toe wall	8.60	1.60	1.40	19.26	m


						Effective d	epth will be 1.50
	g) in hard soil Wing wall on both side	6.00	1.80	4.50	48.60	m	
	h) Apron	3.50	8.60	0.50	15.05		
				Total	255.88		
3	Cement concrete						
	Cement Concrete (1:2:4)						
	a) cutoff wall	17.60	0.60	1.00	10.56		
	b) Head wall coping	8.60	1.20	0.05	0.52		
	c) Apron	3.50	8.60	0.05	1.51		
	d) Transverse sill coping	8.60	0.60	0.05	0.26		
L				Total	12.84		
	Cement Concrete (1:4:8)						
	e) Cutoff wall	17.60	0.80	0.15	2.11		
	f) Toe wall	8.60	1.00	0.15	1.29		
	g) Apron	3.50	8.60	0.15	4.52		
	h) Side wall on both side	8.20	1.40	0.15	1.72		
	i) Wing wall on both side	6.00	1.20	0.15	1.08		
	j)Headwall and Headwall Extension	17.60	1.20	0.15	3.17		
				Total	13.89		
4	Requirement of sand to nullify the imposed of cracks	act					
	a) Below cutoff wall	17.60	0.80	0.10	1.41		
	b)Below Headwall and headwall extensio	n 17.60	1.20	0.10	2.11		
	c) Below side wall on both sides	8.20	1.40	0.10	1.15		
	d) Below wing wall on both side	6.00	1.20	0.10	0.72		
	e) Below apron	3.50	8.60	0.10	3.01		
	f) Below Toe wall	8.60	1.00	0.10	0.86		
				Total	9.26		
5	Stone Masonary in CM 1:4						

a) Headwall and Headwall Extension on both						
side-Foundation	17.60	1.60	1.00	28.16		
b) Headwall+ Headwall Extension on both						
side above gully bed-super structure	17.60	1.30	1.70	38.90	Width=(1+1.6)/2= 1.70 m	
c) Headwall Extension on both the side above						
crest	9.00	1.20	1.30	14.04		
d) Foundation for side wall on both side	8.20	1.20	1.50	14.76		
e) Side wall on both side -super structure (K						
Part)-I	2.20	1.00	1.50	3.30		
f) Side wall on both side-above part-I						
mentioned in (e): (K Part)-II	2.20	0.80	1.00	1.76		
g) Side wall on both side above part-II						
mentioned in (f): (K Part)-III	2.20	0.60	0.50	0.66		
h) Side wall on both side-Super structure (M						
Part)-I	6.00	1.00	1.50	9.00		
i) Side wall on both side above Part-II						
mentioned in (i): (M Part)-III	6.00	0.80	0.75	3.60	Avg. ht. of triangle portion=	0.75
j) Foundation for wing wall on both side	6.00	1.00	1.50	9.00		
k) Wing wall on both side-Super structure-						
Part- I	6.00	0.90	0.75	4.05		
l) Wing wall on both side-Above Part-I						
mentioned in (l): Part -II	6.00	0.80	0.38	1.82	Avg. ht. of triangle portion=	0.38
m) Toe wall: Part I	8.60	0.80	0.80	5.50		

	n) Toe wall: Part II		8.60	0.70	0.40	2.41		
	o) Transverse Sill 8.6			0.60	0.60	3.10		
	p) Apron		3.50	8.60	0.40	12.04		
					Total	152.10		
6	M S Bar (10 mm, q	U III				3.00		
	Providing rough st	one pitching in u/s (b	ooth					
7	side)		34.00	3.00	0.25	25.50		
	Cement pointing to	o stone masonary in (CM					
8	1:3 (sqm)							
	a) Headwall both si	de	14.40		1.70	24.48		
	b) Side wall both sid	de (RHS and LHS)-Par	rt I 8.20		1.50	12.30		
	c) Side wall both sid	le (RHS and LHS)-Par	rt II 2.20		1.50	3.30		
	d) Side wall both sid	de (RHS and LHS)-Par	rt-III 6.00		0.75	4.50	Avg. ht. of triangle portion=	0.75
	e) Wing wall both si	ide-Part I	6.00		0.75	4.50		
	f) Wing wall both si	de-Part I	6.00		0.38	2.28	Avg. ht. of triangle portion=	0.38
					Total	51.36		
	Filling of black clay	y soil in the up strear	n					
9	(free from any kind	d of gravel)				6.00	trolly	

Μ	ATERIAL ABSTRACT									
		Required Quant	Required Quantiy							
		Quantiy,cum	Cement,bags	Sand,cum	Conc ,cum	Khanda (cum)	Boulder(cum)	MS Bar (q)		
	Cement Concrete mix for cut-off wall (1:2:4):									
1	12 mm conc.	12.84	82.17	5.78	11.56					
	Cement Concrete mix for cut-off wall (1:4:8);									
2	20 mm conc.	13.89	47.22	6.53	13.05					
3	Stone Maspnary in CM 1:4	152.10	380.25	51.71		152.10				
4	MS Bar for reinforcing							3.00		
5	Boulder for pitching	25.50					25.50			
6	Cement pointing to stone masonary in CM 1:3 (sqm)	51.36	3.18	0.32						
0	Black clay soil (gravel	51.50	5.10	0.52						
7	free)	6.00								
8	Requirement of sand to nullify the impact of cracks in black soil			9.26						
0	Clacks in black soli Total		512.81	73.60	24.61	152.10	25.50	3.00		

	Sl. No.	Item	Quantity	Unit	Rate (Rs./Unit)	Amount (Rs.)
A	1	Cement	513	Bag	235.00	120511.46
	2	Sand	73.60	m ³	750.00	55199.50
	3	Concrete-12 mm	11.56	m ³	1300.00	15021.63
	4	Concrete-20 mm	13.05	m ³	1150.00	15011.85
	5	Khanda	152	m ³	1200.00	182517.60
	6	M S Bar (10 mm Saria)	3.00	q	4000.00	12000.00
	7	Boulder	25.50	m ³	700.00	17850.00
		Filling of black clay soil in the up				
	8	stream (free from any kind of gravel)	6.00		1500.00	9000.00
					Total	427112.03
		Water supply through tanker @ 3 % of				
В	9	material cost				12813.36
С	10	Labour Charges @ 25%				106778.01
					Total (A+B+C)	546703.40
	11	Misc. @ 3%				16401.10
					G. Total	563104.50

Area under Treatment (ha)	Top width	Height	Bottom width	Cross Section (m2)
	0.50	0.55		1.00
	0.50	0.75	2.75	1.22
	0.50	0.80	2.90	1.36
	0.50	0.90	3.20	1.67
	0.50	1.00	3.50	2.00
1883	0.60	0.80	3.00	1.44
	0.60	0.90	3.30	1.76
	0.60	1.00	3.60	2.10
	0.45	0.75	2.70	1.18
	0.45	0.80	2.85	1.32

Table 10.1: Cross section of different size of contour/graded/field bund under 0-3 per cent slope

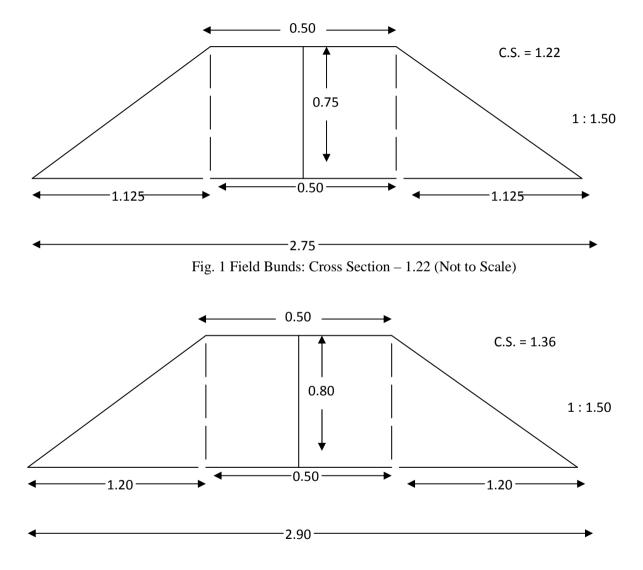
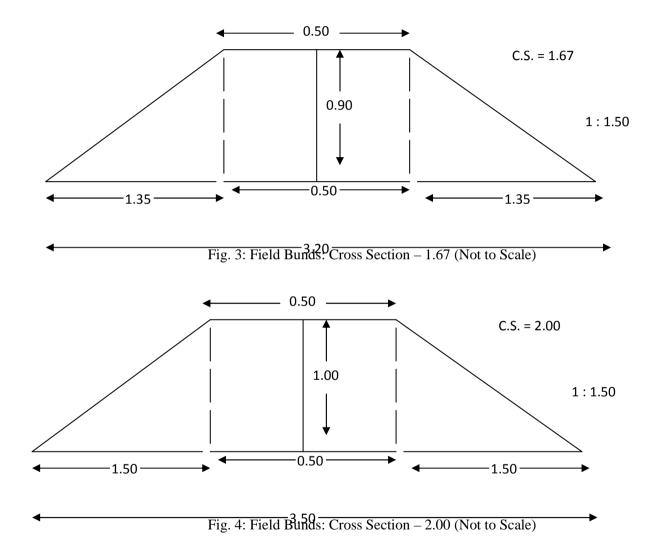
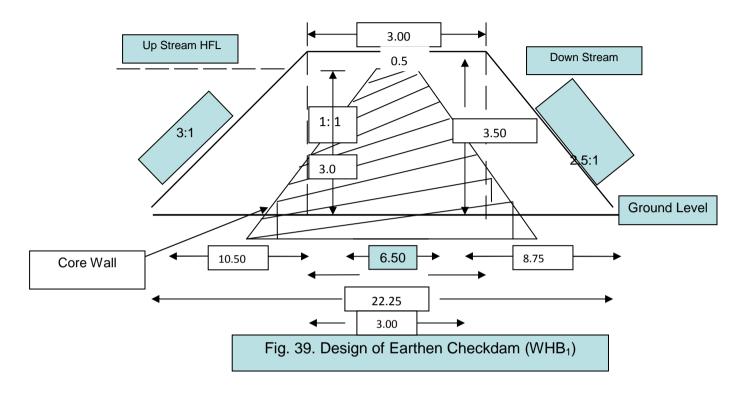
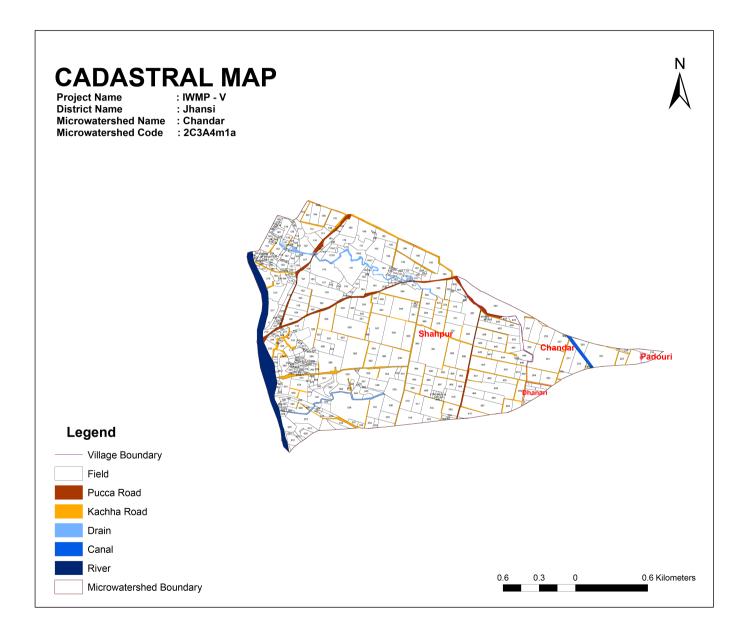
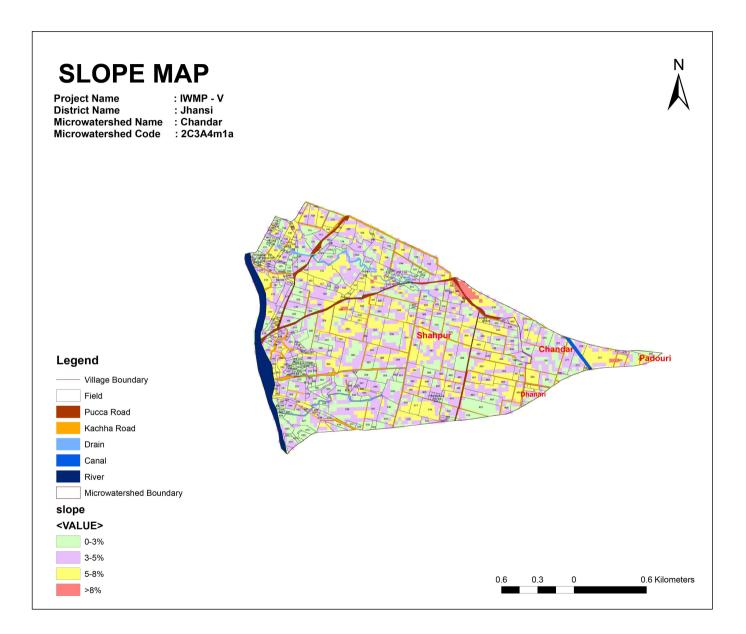
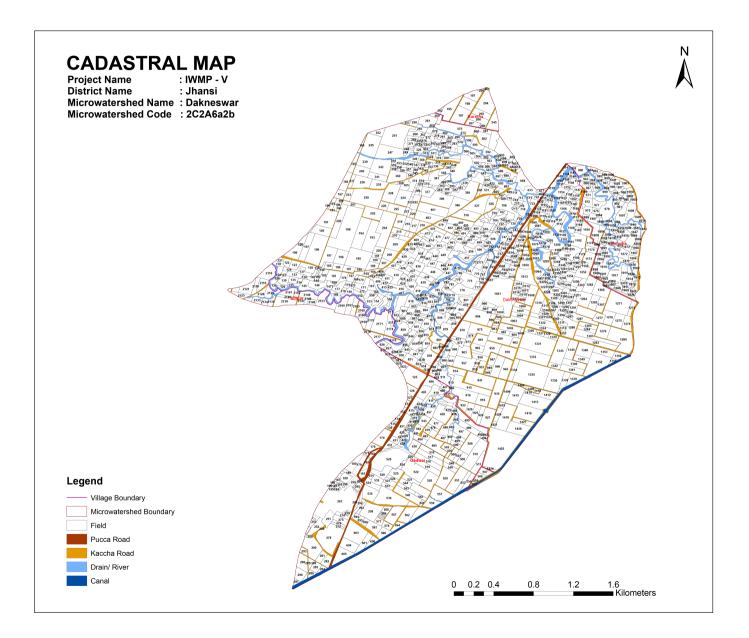
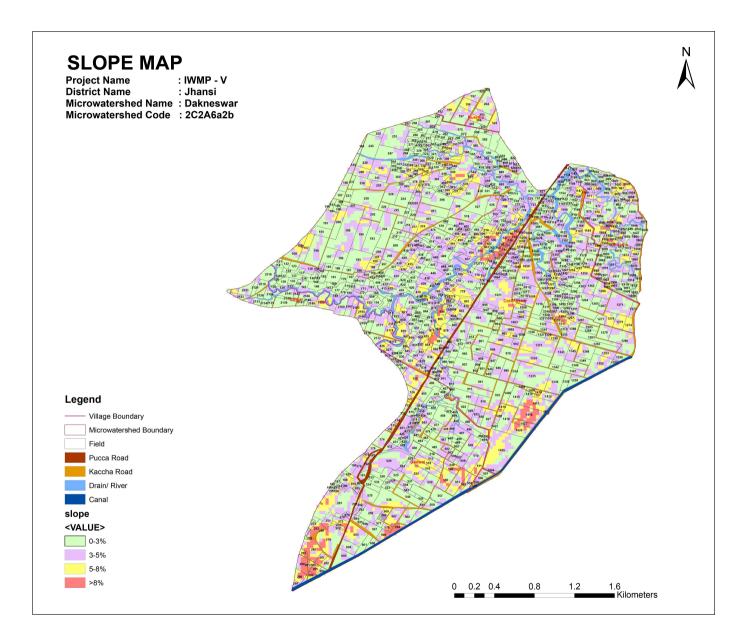




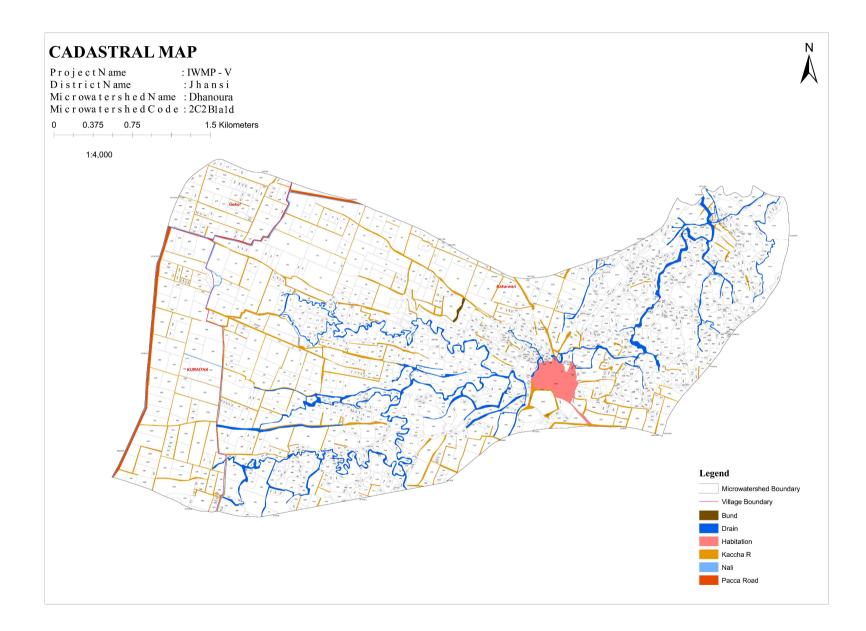
Fig. 2: Field Bunds: Cross Section – 1.36 (Not to Scale)

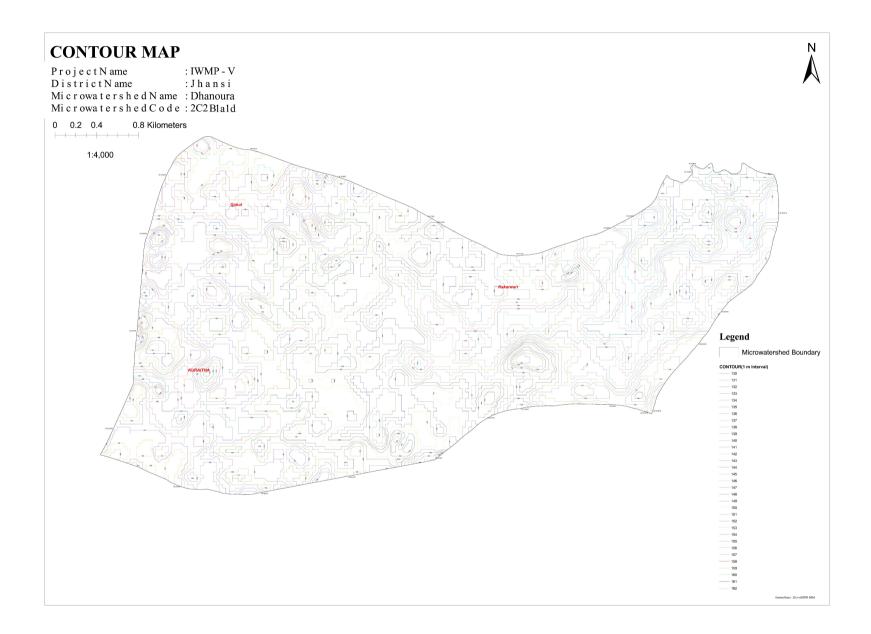

Area under Treatment (ha)	Items	Т	H	B	CS
	Core wall	0.50	3.00	6.50	10.50
	Earthen Bund	3.00	3.50	22.25	44.19
	Stone Pitching		1.00	0.25	0.25
	Total (CD1)				
	Core wall	0.50	2.50	5.50	7.50
	Earthen Bund	3.00	3.00	19.50	33.75
	Stone Pitching		1.00	0.25	0.25
	Total (CD2)				
	Core wall	0.50	3.00	6.50	10.50
	Earthen Bund	3.00	3.50	22.25	44.19
	Stone Pitching		1.00	0.25	0.25
734	Total (WHB1)				
/34	Core wall	0.50	2.50	5.50	7.50
	Earthen Bund	3.00	3.00	19.50	33.75
	Stone Pitching		1.00	0.25	0.25
	Total (WHB2)				
	Core wall	0.50	2.50	5.50	7.50
	Earthen Bund	3.00	3.00	19.50	33.75
	Stone Pitching		1.00	0.25	0.25
	Total (WHB3)				
	Core wall	0.50	2.50	5.50	7.50
	Earthen Bund	3.00	3.00	19.50	33.75
	Stone Pitching		1.00	0.25	0.25
	Total (WHB4)				

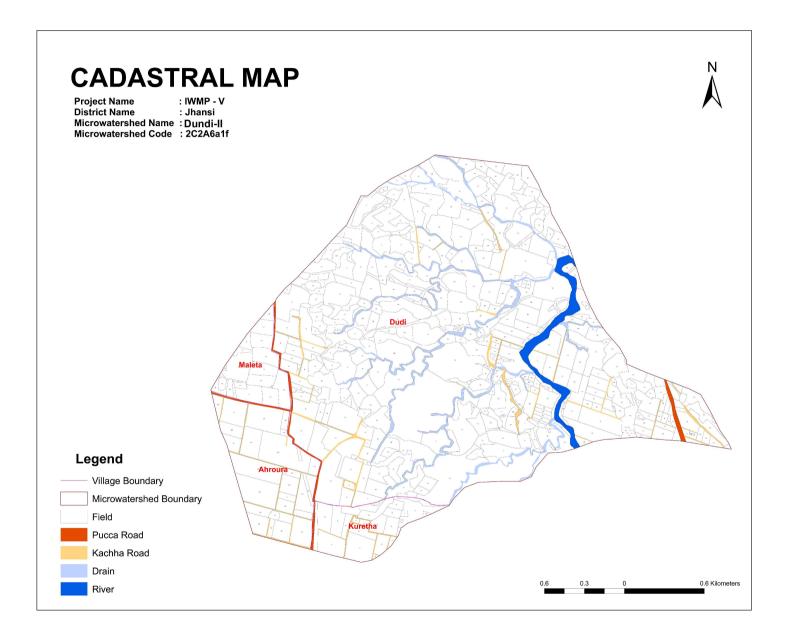

Table 10.2 Cross section of different size of earthen checkdam/water harvesting bund under more than 5 per cent slope

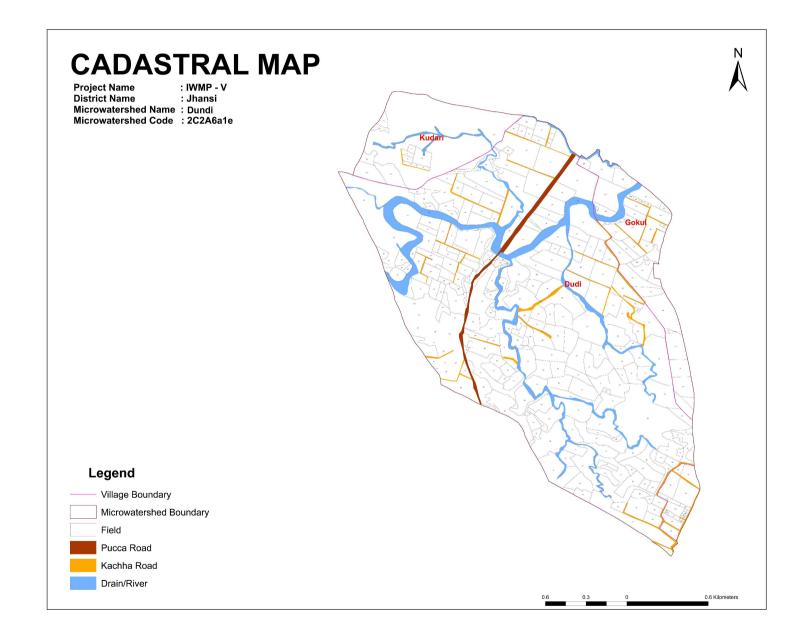


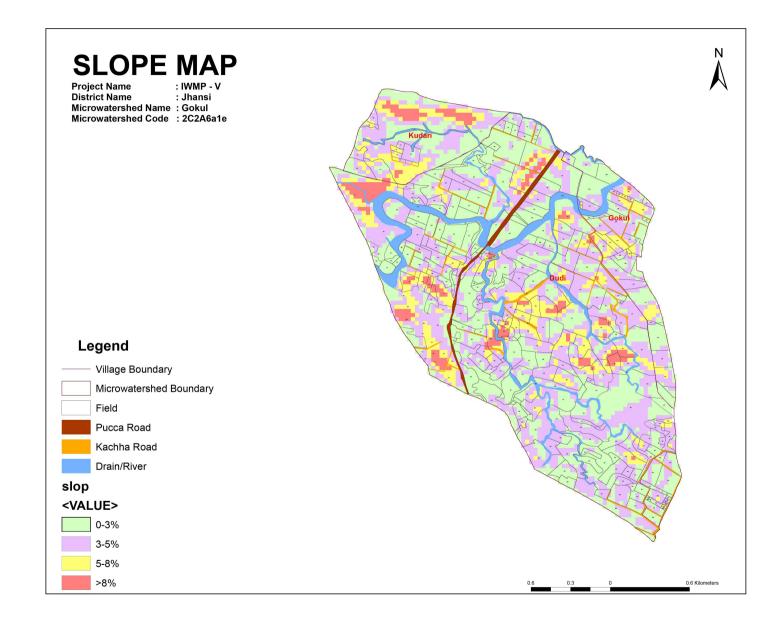

Not to scale

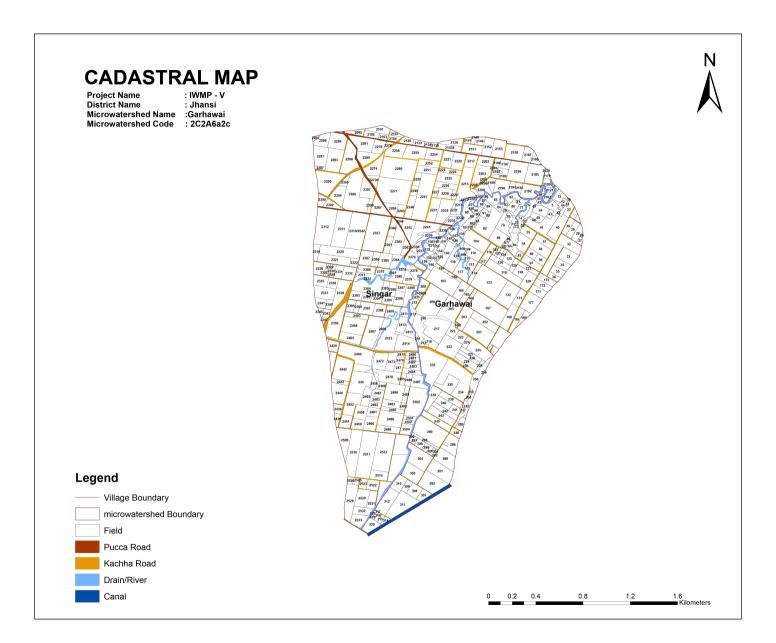


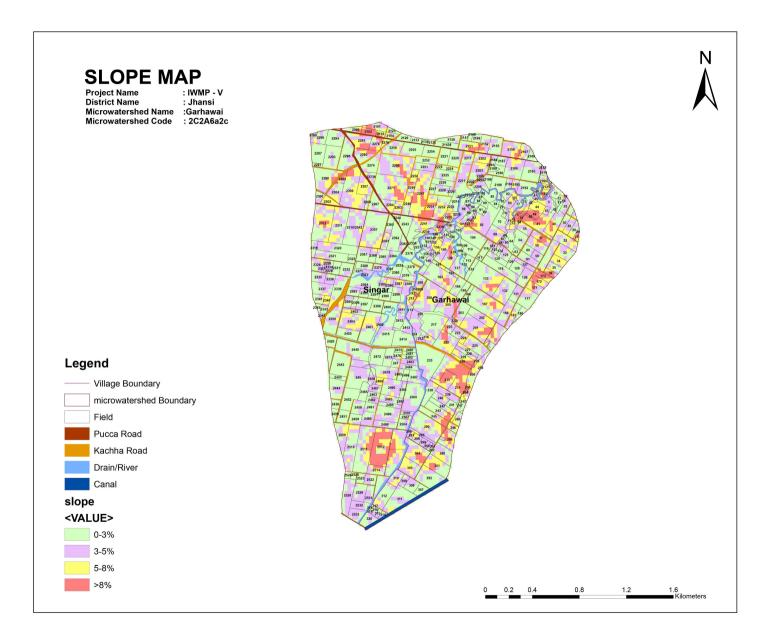


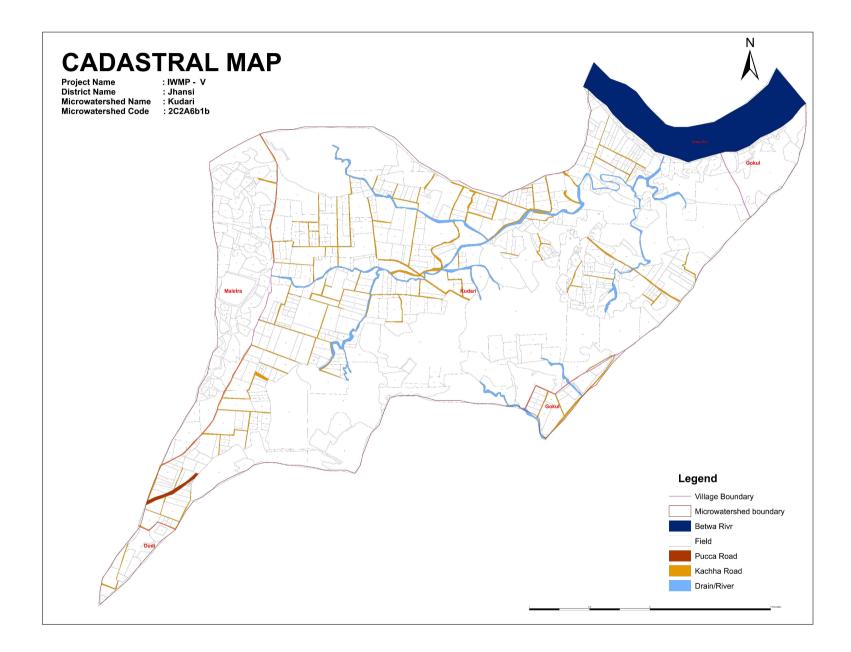


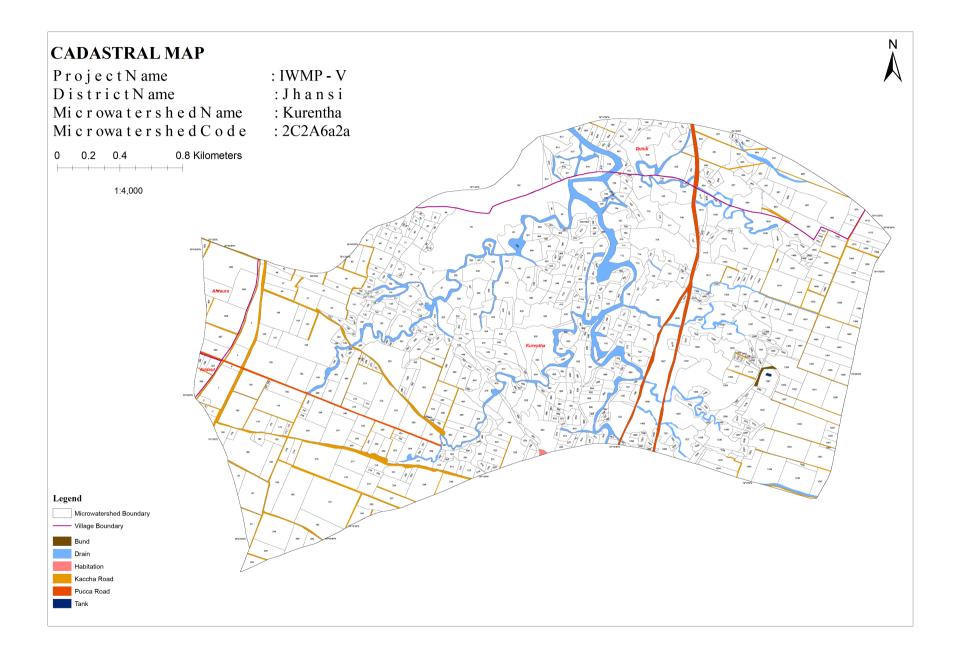


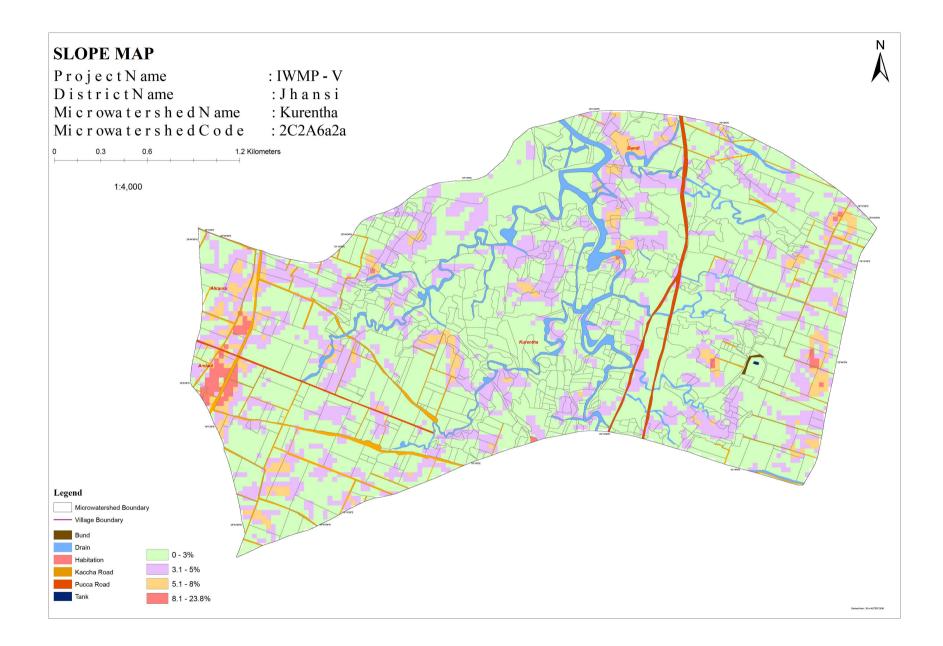


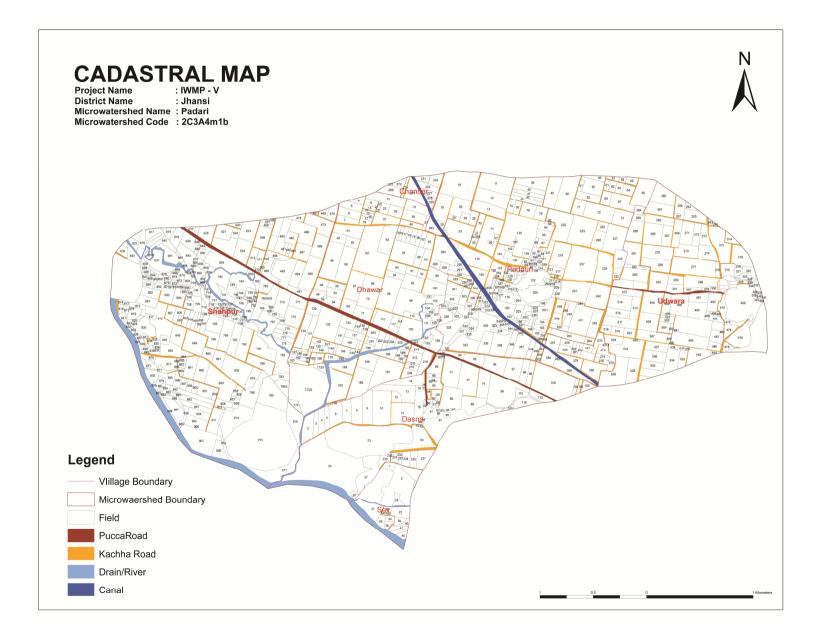


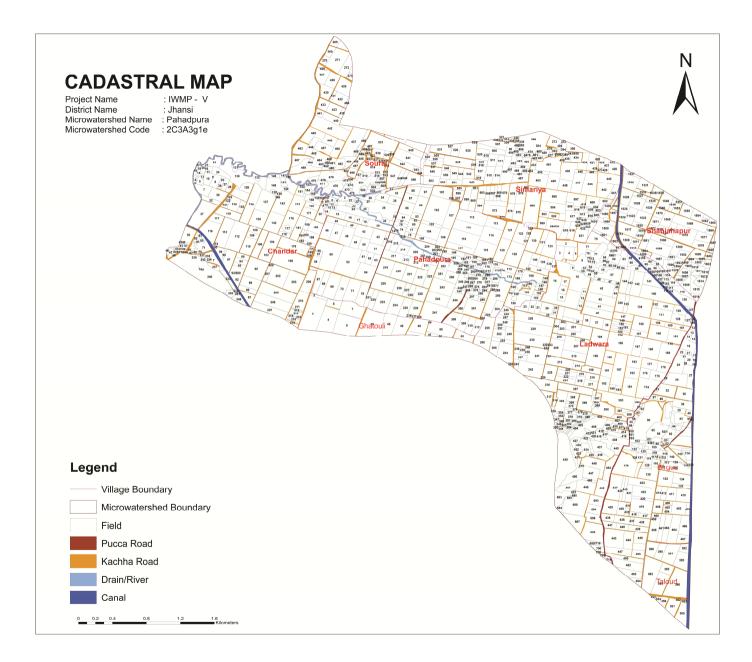












REFERENCES

Anonymous. 2008. Harmonization of wasteland/degraded lands datasets of India. Wasteland News, XXIII, No. 4, pp. 50-53. Dhruva Naravana, V.V. (1993). Soil & Water Conservation Research in India. ICAR, New

Delhi.

- Dhyani, S. K.; Sharda, V. N. and Jual G.P. 2007. Training Manual: Soil Conservation and Watershed Management, Vol. III, CSWCR&TI, Dehradun, PP. 315.
- Das, G. 2004. Hydrology and Soil Conservation Engineering. Prentice-Hall of India, New Delhi, pp. 489.
- Gottschalk, L. C. 1964. Reservoir sedimentation. In: V. T. Chow (edition), Handbook of Applied Hydrology. McGraw Hill Book Company, New York, section 7-I.
- Grewal, S.S. 1993. Agroforestry systems for soil and water conservation in Shivaliks.In: Agroforestry in 2000 AD for the semi arid and arid tropics. NRC for Agroforestry, Jhansi, 82-85
- Horton, R. E. 1932. Drainage basin characteristics. Transaction American Geophsics Union, 13: 350-361.
- Horton, R. E. 1945. Erosional development of streams and their drainage basins; Hydrological approach to quantitative morphology. *Geological Society of American Bulletin*, 56 : 275-370.
- Jual, G.P.; Katiyar, V.S. and Arya, R. K. Gabions for soil conservation works. Indian Farmers' Digest. XXVI (1):10-13
- Miller, V. C. 1953. A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area, *Technical report-3*, Columbia. University department of Geology.
- Mohan, S. C.; Samra, J. S.; Srivastava, A. K. and Sharda, V. N. 2007. Training Manual: Soil Conservation and Watershed Management, Vol. I-Soil, Agronomy & Socio-economic Aspects, CSWCR&TI, Dehradun, PP. 330.
- Ram Babu; Tejwani, K.G.; Agarwal, M.C. and Bhushan, L.S. 1979. Rainfall intensity-duration-return period equations and nomographs of India, Bulletin No.3, CSWCRTI, Dehradun.
- Samra, J.S. and Dhyani, S. K. 2001. Role of trees in watershed development. In: Agroforestry (Eds. Sunil Puri et al.), ICAR, New Delhi
- Samra, J.S. and Narayan, Pratap. 1998. *Soil and Water Conservation*. In: 50 Years of Natural Resource Management Research (Eds. G. B. Singh and B. R. Sharma), ICAR, New Delhi, pp. 145-176.
- Schumn, S. A. 1956. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. *Geological Society of American Bulletin*, 67, 597-646.

Schwab, G.O., Frevert, R. K.; Edminster, T. W. and Barnes, K. K. 1981. Soil and Water Conservation Engineering, John Wiley, N. York.

- Sharda, V.N. and Juyal, G.P. Water harvesting techniques, design of small dams and hydraulic complements. pp. 1-26.
- Singh, Anupam K.; Nestmann, Franz and Eldho, T. I. 2004. Estimating hydrological parameters for Anas catchment from watershed characteristics. *In: International conference on Advanced Modelling Technique for Sustainable Management of water Resources, 28-30 Jan 2004* : pp 30-33.
- Singh, Ramesh; Rizvi, R.H.; Dadhwal, K. S.; Kareemulla, K. and Yadav, R. S. 2002. Rainfall pattern and crop planning in Bundelkhand region of central India. *Asian J. Microbiology, Biotechnology & Environmental Sciences* 4: 555-560.

- Singh, Ramesh; Rizvi, R.H.; Kareemulla, K.; Dadhwal, K.S. and Solanki, K. R. 2002. Rainfall analysis for investigation of drought at Jhansi in Bundelkhand region. *Indian J. Soil Cons* 30: 117-121.
- Singh, S. and Singh, M. C. 1997. Morphometric analysis of Kanhar river basin. National Geographical Journal of India. 43 (1): 31-43.
- Strahler, A. N. 1952. Quantitative analysis of watershed geomorphology. Transaction of American Geophysics Union, 38: 913-920.
- Strahler, A. N. 1964. Quantitative geomorphology of drainage basins and channel networks. In: V. T. Chow (edition), Handbook of Applied Hydrology, McGraw Hill Book Company, New York, section 4-II.
- Tideman, E.M. 1999. Watershed Management Guidelines for Indian Conditions. Omega Scientific Publishers, New Delhi.
- Tiwari, A. K.; Sharma, A. K.; Bhatt, V. K. and Srivastav, M. M. 1998. Drought estimation through rainfall analysis for Bundelkhand region. *Indian J. Soil Cons.* 26(3): 280-283.
- Tyagi, R. K. 1997. Grassland and Fodder Atlas of Bundelkhand IGFRI, Jhansi, pp 178.

ACKNOWLEDGEMENTS

The Detailed Project Report (DPR) of IWMP–V including Micro-watershed Maletha, Kudri, Dundi-I, Dundi-II, Kurentha, Dakhaneswar, Garhawai, Pahra and Dhanaura, Maigaon in Block- Bamaur of District- Jhansi is prepared by Bundelkhand Organic Agriculture Development Society (BOADS), Jhansi. BOADS is an NGO registered under Societies Registration Act XXI, 1860 (Registration No. 103/2006 dated 25.05.2006). It is working in Bundelkhand region since 2006 for the sustainable development of agriculture through management of natural resources by organic farming and watershed approach. It is also engaged in advisory/disseminating technology to the end users in the region through the group of eminent scientists, agricultural technicians and workers.

Technical assistance/guidance received from Dr. Ramesh Singh, Sr. Scientist (Soil and Water Conservation Engg.), National Research Centre for Agroforestry, Jhansi is gratefully acknowledged. Dr. Ramesh Singh is associated with the Project titled "Model watershed project on Natural Resource Management through agroforestry interventions at Garhkundar, Tikamgarh (M.P.)" which is successfully implemented by NRCAF (ICAR), Jhansi.

Thanks are also due to Sri V. K. Sachan, Agronomist, Dept. of Agriculture and Sri A. K. Solanki, Expert (Soil and Water Conservation), CSAU&T, Kanpur for their kind co-operation and contributions in preparing DPR.

The team of BOADS also extends its sincere gratitude towards Dr. S. K. Dhyani, Director, National Research Centre for Agroforestry (NRCAF), Jhansi and Dr. H. C. Sharma, Dean, College of Tech., GBPUA&T, Pantnagar, Udham Singh Nagar, Uttarakhand for their guidance and timely suggestions in preparation of DPR.

BOADS also extends its gratitude to Dr. P. De, Co-ordinator, Science, Dehradun for his contribution in preparing different layers using GIS and Remote Sensing.

Thanks are also due to Er. Yogesh Raudal, Expert (Watershed Management), Gujrat State Watershed Mangement Agency, Er. Sudheer Kumar Tiwar, Mr. Anil Kumar Shukla, Mr. Babloo Sharma, Mr. P K Singh, Mr. Vikas Kushwaha and Mrs. Pooja Lohiya BOADS, Jhansi for their assistance in collecting GPS points, soil samples, capacity survey, preparing contour maps, suitability analysis of the structures proposed in the DPR.

For any information/clarification/modification contact to:

Secretary, BOADS, 93-4/A, Civil Lines, Jhansi Ph. No. 0510-6450745, 2446222